(0) Obligation:

Clauses:

duplicate([], []).
duplicate(.(X, Y), .(X, .(X, Z))) :- duplicate(Y, Z).

Queries:

duplicate(g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
duplicate_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y)) → DUPLICATE_IN_GA(Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DUPLICATE_IN_GA(.(X, Y)) → DUPLICATE_IN_GA(Y)
    The graph contains the following edges 1 > 1

(12) TRUE

(13) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
duplicate_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(14) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)

(15) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(19) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(21) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(X, Y)) → DUPLICATE_IN_GA(Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.