0 Prolog
↳1 PrologToDTProblemTransformerProof (⇐)
↳2 TRIPLES
↳3 TriplesToPiDPProof (⇐)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 PiDP
↳8 UsableRulesProof (⇔)
↳9 PiDP
↳10 PiDPToQDPProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 YES
↳14 PiDP
↳15 PiDPToQDPProof (⇔)
↳16 QDP
↳17 MRRProof (⇔)
↳18 QDP
↳19 MRRProof (⇔)
↳20 QDP
↳21 DependencyGraphProof (⇔)
↳22 TRUE
↳23 PiDP
↳24 UsableRulesProof (⇔)
↳25 PiDP
↳26 PiDPToQDPProof (⇔)
↳27 QDP
↳28 QDPSizeChangeProof (⇔)
↳29 YES
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → U2_G(T19, T20, T10, le19_in_gg(T19, T20))
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → LE19_IN_GG(T19, T20)
LE19_IN_GG(s(T33), s(T34)) → U1_GG(T33, T34, le19_in_gg(T33, T34))
LE19_IN_GG(s(T33), s(T34)) → LE19_IN_GG(T33, T34)
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → U3_G(T19, T20, T10, lec19_in_gg(T19, T20))
U3_G(T19, T20, T10, lec19_out_gg(T19, T20)) → U4_G(T19, T20, T10, ordered1_in_g(.(s(T20), T10)))
U3_G(T19, T20, T10, lec19_out_gg(T19, T20)) → ORDERED1_IN_G(.(s(T20), T10))
ORDERED1_IN_G(.(0, .(s(0), T10))) → U5_G(T10, ordered1_in_g(.(s(0), T10)))
ORDERED1_IN_G(.(0, .(s(0), T10))) → ORDERED1_IN_G(.(s(0), T10))
ORDERED1_IN_G(.(0, .(0, T10))) → U6_G(T10, ordered1_in_g(.(0, T10)))
ORDERED1_IN_G(.(0, .(0, T10))) → ORDERED1_IN_G(.(0, T10))
lec19_in_gg(s(T33), s(T34)) → U12_gg(T33, T34, lec19_in_gg(T33, T34))
lec19_in_gg(0, s(0)) → lec19_out_gg(0, s(0))
lec19_in_gg(0, 0) → lec19_out_gg(0, 0)
U12_gg(T33, T34, lec19_out_gg(T33, T34)) → lec19_out_gg(s(T33), s(T34))
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → U2_G(T19, T20, T10, le19_in_gg(T19, T20))
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → LE19_IN_GG(T19, T20)
LE19_IN_GG(s(T33), s(T34)) → U1_GG(T33, T34, le19_in_gg(T33, T34))
LE19_IN_GG(s(T33), s(T34)) → LE19_IN_GG(T33, T34)
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → U3_G(T19, T20, T10, lec19_in_gg(T19, T20))
U3_G(T19, T20, T10, lec19_out_gg(T19, T20)) → U4_G(T19, T20, T10, ordered1_in_g(.(s(T20), T10)))
U3_G(T19, T20, T10, lec19_out_gg(T19, T20)) → ORDERED1_IN_G(.(s(T20), T10))
ORDERED1_IN_G(.(0, .(s(0), T10))) → U5_G(T10, ordered1_in_g(.(s(0), T10)))
ORDERED1_IN_G(.(0, .(s(0), T10))) → ORDERED1_IN_G(.(s(0), T10))
ORDERED1_IN_G(.(0, .(0, T10))) → U6_G(T10, ordered1_in_g(.(0, T10)))
ORDERED1_IN_G(.(0, .(0, T10))) → ORDERED1_IN_G(.(0, T10))
lec19_in_gg(s(T33), s(T34)) → U12_gg(T33, T34, lec19_in_gg(T33, T34))
lec19_in_gg(0, s(0)) → lec19_out_gg(0, s(0))
lec19_in_gg(0, 0) → lec19_out_gg(0, 0)
U12_gg(T33, T34, lec19_out_gg(T33, T34)) → lec19_out_gg(s(T33), s(T34))
LE19_IN_GG(s(T33), s(T34)) → LE19_IN_GG(T33, T34)
lec19_in_gg(s(T33), s(T34)) → U12_gg(T33, T34, lec19_in_gg(T33, T34))
lec19_in_gg(0, s(0)) → lec19_out_gg(0, s(0))
lec19_in_gg(0, 0) → lec19_out_gg(0, 0)
U12_gg(T33, T34, lec19_out_gg(T33, T34)) → lec19_out_gg(s(T33), s(T34))
LE19_IN_GG(s(T33), s(T34)) → LE19_IN_GG(T33, T34)
LE19_IN_GG(s(T33), s(T34)) → LE19_IN_GG(T33, T34)
From the DPs we obtained the following set of size-change graphs:
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → U3_G(T19, T20, T10, lec19_in_gg(T19, T20))
U3_G(T19, T20, T10, lec19_out_gg(T19, T20)) → ORDERED1_IN_G(.(s(T20), T10))
lec19_in_gg(s(T33), s(T34)) → U12_gg(T33, T34, lec19_in_gg(T33, T34))
lec19_in_gg(0, s(0)) → lec19_out_gg(0, s(0))
lec19_in_gg(0, 0) → lec19_out_gg(0, 0)
U12_gg(T33, T34, lec19_out_gg(T33, T34)) → lec19_out_gg(s(T33), s(T34))
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → U3_G(T19, T20, T10, lec19_in_gg(T19, T20))
U3_G(T19, T20, T10, lec19_out_gg(T19, T20)) → ORDERED1_IN_G(.(s(T20), T10))
lec19_in_gg(s(T33), s(T34)) → U12_gg(T33, T34, lec19_in_gg(T33, T34))
lec19_in_gg(0, s(0)) → lec19_out_gg(0, s(0))
lec19_in_gg(0, 0) → lec19_out_gg(0, 0)
U12_gg(T33, T34, lec19_out_gg(T33, T34)) → lec19_out_gg(s(T33), s(T34))
lec19_in_gg(x0, x1)
U12_gg(x0, x1, x2)
lec19_in_gg(0, s(0)) → lec19_out_gg(0, s(0))
lec19_in_gg(0, 0) → lec19_out_gg(0, 0)
POL(.(x1, x2)) = 1 + 2·x1 + 2·x2
POL(0) = 0
POL(ORDERED1_IN_G(x1)) = x1
POL(U12_gg(x1, x2, x3)) = x1 + x2 + x3
POL(U3_G(x1, x2, x3, x4)) = 1 + x1 + 2·x2 + 2·x3 + 2·x4
POL(lec19_in_gg(x1, x2)) = 1 + x1 + x2
POL(lec19_out_gg(x1, x2)) = x1 + x2
POL(s(x1)) = 2·x1
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → U3_G(T19, T20, T10, lec19_in_gg(T19, T20))
U3_G(T19, T20, T10, lec19_out_gg(T19, T20)) → ORDERED1_IN_G(.(s(T20), T10))
lec19_in_gg(s(T33), s(T34)) → U12_gg(T33, T34, lec19_in_gg(T33, T34))
U12_gg(T33, T34, lec19_out_gg(T33, T34)) → lec19_out_gg(s(T33), s(T34))
lec19_in_gg(x0, x1)
U12_gg(x0, x1, x2)
U3_G(T19, T20, T10, lec19_out_gg(T19, T20)) → ORDERED1_IN_G(.(s(T20), T10))
POL(.(x1, x2)) = x1 + x2
POL(ORDERED1_IN_G(x1)) = 2·x1
POL(U12_gg(x1, x2, x3)) = x1 + 2·x2 + x3
POL(U3_G(x1, x2, x3, x4)) = 2·x1 + 2·x2 + 2·x3 + x4
POL(lec19_in_gg(x1, x2)) = 2·x1 + 2·x2
POL(lec19_out_gg(x1, x2)) = 2 + x1 + 2·x2
POL(s(x1)) = 2·x1
ORDERED1_IN_G(.(s(T19), .(s(T20), T10))) → U3_G(T19, T20, T10, lec19_in_gg(T19, T20))
lec19_in_gg(s(T33), s(T34)) → U12_gg(T33, T34, lec19_in_gg(T33, T34))
U12_gg(T33, T34, lec19_out_gg(T33, T34)) → lec19_out_gg(s(T33), s(T34))
lec19_in_gg(x0, x1)
U12_gg(x0, x1, x2)
ORDERED1_IN_G(.(0, .(0, T10))) → ORDERED1_IN_G(.(0, T10))
lec19_in_gg(s(T33), s(T34)) → U12_gg(T33, T34, lec19_in_gg(T33, T34))
lec19_in_gg(0, s(0)) → lec19_out_gg(0, s(0))
lec19_in_gg(0, 0) → lec19_out_gg(0, 0)
U12_gg(T33, T34, lec19_out_gg(T33, T34)) → lec19_out_gg(s(T33), s(T34))
ORDERED1_IN_G(.(0, .(0, T10))) → ORDERED1_IN_G(.(0, T10))
ORDERED1_IN_G(.(0, .(0, T10))) → ORDERED1_IN_G(.(0, T10))
From the DPs we obtained the following set of size-change graphs: