0 Prolog
↳1 PrologToPiTRSProof (⇐)
↳2 PiTRS
↳3 DependencyPairsProof (⇔)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 PiDP
↳8 UsableRulesProof (⇔)
↳9 PiDP
↳10 PiDPToQDPProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 PiDP
↳15 UsableRulesProof (⇔)
↳16 PiDP
↳17 PiDPToQDPProof (⇐)
↳18 QDP
↳19 PrologToPiTRSProof (⇐)
↳20 PiTRS
↳21 DependencyPairsProof (⇔)
↳22 PiDP
↳23 DependencyGraphProof (⇔)
↳24 AND
↳25 PiDP
↳26 UsableRulesProof (⇔)
↳27 PiDP
↳28 PiDPToQDPProof (⇔)
↳29 QDP
↳30 QDPSizeChangeProof (⇔)
↳31 TRUE
↳32 PiDP
↳33 UsableRulesProof (⇔)
↳34 PiDP
↳35 PiDPToQDPProof (⇔)
↳36 QDP
↳37 MRRProof (⇔)
↳38 QDP
↳39 DependencyGraphProof (⇔)
↳40 TRUE
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
ORDERED_IN_G(.(X, .(Y, Xs))) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U3_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_G(X, Y, Xs, le_out_gg(X, Y)) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
ORDERED_IN_G(.(X, .(Y, Xs))) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U3_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_G(X, Y, Xs, le_out_gg(X, Y)) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_G(Y, Xs, le_out_gg) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg
le_in_gg(0, 0) → le_out_gg
U3_gg(le_out_gg) → le_out_gg
le_in_gg(x0, x1)
U3_gg(x0)
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
ORDERED_IN_G(.(X, .(Y, Xs))) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U3_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_G(X, Y, Xs, le_out_gg(X, Y)) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
ORDERED_IN_G(.(X, .(Y, Xs))) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → U3_GG(X, Y, le_in_gg(X, Y))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
U1_G(X, Y, Xs, le_out_gg(X, Y)) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
LE_IN_GG(s(X), s(Y)) → LE_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X, [])) → ordered_out_g(.(X, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, le_out_gg(X, Y)) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
le_in_gg(x0, x1)
U3_gg(x0, x1, x2)
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, le_in_gg(X, Y))
POL(.(x1, x2)) = 1 + 2·x1 + x2
POL(0) = 0
POL(ORDERED_IN_G(x1)) = 2·x1
POL(U1_G(x1, x2, x3, x4)) = 2 + x1 + 2·x2 + 2·x3 + x4
POL(U3_gg(x1, x2, x3)) = x1 + 2·x2 + x3
POL(le_in_gg(x1, x2)) = 2·x1 + 2·x2
POL(le_out_gg(x1, x2)) = x1 + 2·x2
POL(s(x1)) = 2·x1
U1_G(X, Y, Xs, le_out_gg(X, Y)) → ORDERED_IN_G(.(Y, Xs))
le_in_gg(s(X), s(Y)) → U3_gg(X, Y, le_in_gg(X, Y))
le_in_gg(0, s(0)) → le_out_gg(0, s(0))
le_in_gg(0, 0) → le_out_gg(0, 0)
U3_gg(X, Y, le_out_gg(X, Y)) → le_out_gg(s(X), s(Y))
le_in_gg(x0, x1)
U3_gg(x0, x1, x2)