(0) Obligation:
Clauses:
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
app([], Ys, Ys).
reverse(.(X, Xs), Ys) :- ','(reverse(Xs, Zs), app(Zs, .(X, []), Ys)).
reverse([], []).
Queries:
reverse(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reverse_in: (f,b) (f,f)
app_in: (b,b,f) (b,b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AG(.(X, Xs), Ys) → U2_AG(X, Xs, Ys, reverse_in_aa(Xs, Zs))
REVERSE_IN_AG(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
REVERSE_IN_AA(.(X, Xs), Ys) → U2_AA(X, Xs, Ys, reverse_in_aa(Xs, Zs))
REVERSE_IN_AA(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
U2_AA(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_AA(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
U2_AA(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → APP_IN_GGA(Zs, .(X, []), Ys)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U1_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U2_AG(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_AG(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
U2_AG(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → APP_IN_GGG(Zs, .(X, []), Ys)
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → U1_GGG(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGG(Xs, Ys, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
REVERSE_IN_AG(
x1,
x2) =
REVERSE_IN_AG(
x2)
U2_AG(
x1,
x2,
x3,
x4) =
U2_AG(
x3,
x4)
REVERSE_IN_AA(
x1,
x2) =
REVERSE_IN_AA
U2_AA(
x1,
x2,
x3,
x4) =
U2_AA(
x4)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x2,
x4)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x5)
U3_AG(
x1,
x2,
x3,
x4) =
U3_AG(
x2,
x4)
APP_IN_GGG(
x1,
x2,
x3) =
APP_IN_GGG(
x1,
x2,
x3)
U1_GGG(
x1,
x2,
x3,
x4,
x5) =
U1_GGG(
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AG(.(X, Xs), Ys) → U2_AG(X, Xs, Ys, reverse_in_aa(Xs, Zs))
REVERSE_IN_AG(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
REVERSE_IN_AA(.(X, Xs), Ys) → U2_AA(X, Xs, Ys, reverse_in_aa(Xs, Zs))
REVERSE_IN_AA(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
U2_AA(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_AA(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
U2_AA(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → APP_IN_GGA(Zs, .(X, []), Ys)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U1_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U2_AG(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_AG(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
U2_AG(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → APP_IN_GGG(Zs, .(X, []), Ys)
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → U1_GGG(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGG(Xs, Ys, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
REVERSE_IN_AG(
x1,
x2) =
REVERSE_IN_AG(
x2)
U2_AG(
x1,
x2,
x3,
x4) =
U2_AG(
x3,
x4)
REVERSE_IN_AA(
x1,
x2) =
REVERSE_IN_AA
U2_AA(
x1,
x2,
x3,
x4) =
U2_AA(
x4)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x2,
x4)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x5)
U3_AG(
x1,
x2,
x3,
x4) =
U3_AG(
x2,
x4)
APP_IN_GGG(
x1,
x2,
x3) =
APP_IN_GGG(
x1,
x2,
x3)
U1_GGG(
x1,
x2,
x3,
x4,
x5) =
U1_GGG(
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 9 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGG(Xs, Ys, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
APP_IN_GGG(
x1,
x2,
x3) =
APP_IN_GGG(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGG(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
APP_IN_GGG(
x1,
x2,
x3) =
APP_IN_GGG(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP_IN_GGG(.(Xs), Ys, .(Zs)) → APP_IN_GGG(Xs, Ys, Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP_IN_GGG(.(Xs), Ys, .(Zs)) → APP_IN_GGG(Xs, Ys, Zs)
The graph contains the following edges 1 > 1, 2 >= 2, 3 > 3
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(Xs), Ys) → APP_IN_GGA(Xs, Ys)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP_IN_GGA(.(Xs), Ys) → APP_IN_GGA(Xs, Ys)
The graph contains the following edges 1 > 1, 2 >= 2
(20) TRUE
(21) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AA(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
REVERSE_IN_AA(
x1,
x2) =
REVERSE_IN_AA
We have to consider all (P,R,Pi)-chains
(22) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(23) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AA(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
REVERSE_IN_AA(
x1,
x2) =
REVERSE_IN_AA
We have to consider all (P,R,Pi)-chains
(24) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AA → REVERSE_IN_AA
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(26) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
REVERSE_IN_AA evaluates to t =
REVERSE_IN_AAThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from REVERSE_IN_AA to REVERSE_IN_AA.
(27) FALSE
(28) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reverse_in: (f,b) (f,f)
app_in: (b,b,f) (b,b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x2,
x3,
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x3,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x2,
x3,
x4,
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg(
x1,
x2,
x3)
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(29) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x2,
x3,
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x3,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x2,
x3,
x4,
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg(
x1,
x2,
x3)
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
(30) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AG(.(X, Xs), Ys) → U2_AG(X, Xs, Ys, reverse_in_aa(Xs, Zs))
REVERSE_IN_AG(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
REVERSE_IN_AA(.(X, Xs), Ys) → U2_AA(X, Xs, Ys, reverse_in_aa(Xs, Zs))
REVERSE_IN_AA(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
U2_AA(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_AA(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
U2_AA(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → APP_IN_GGA(Zs, .(X, []), Ys)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U1_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U2_AG(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_AG(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
U2_AG(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → APP_IN_GGG(Zs, .(X, []), Ys)
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → U1_GGG(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGG(Xs, Ys, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x2,
x3,
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x3,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x2,
x3,
x4,
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg(
x1,
x2,
x3)
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
REVERSE_IN_AG(
x1,
x2) =
REVERSE_IN_AG(
x2)
U2_AG(
x1,
x2,
x3,
x4) =
U2_AG(
x3,
x4)
REVERSE_IN_AA(
x1,
x2) =
REVERSE_IN_AA
U2_AA(
x1,
x2,
x3,
x4) =
U2_AA(
x4)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x2,
x4)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x2,
x3,
x5)
U3_AG(
x1,
x2,
x3,
x4) =
U3_AG(
x2,
x3,
x4)
APP_IN_GGG(
x1,
x2,
x3) =
APP_IN_GGG(
x1,
x2,
x3)
U1_GGG(
x1,
x2,
x3,
x4,
x5) =
U1_GGG(
x2,
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(31) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AG(.(X, Xs), Ys) → U2_AG(X, Xs, Ys, reverse_in_aa(Xs, Zs))
REVERSE_IN_AG(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
REVERSE_IN_AA(.(X, Xs), Ys) → U2_AA(X, Xs, Ys, reverse_in_aa(Xs, Zs))
REVERSE_IN_AA(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
U2_AA(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_AA(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
U2_AA(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → APP_IN_GGA(Zs, .(X, []), Ys)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U1_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U2_AG(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_AG(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
U2_AG(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → APP_IN_GGG(Zs, .(X, []), Ys)
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → U1_GGG(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGG(Xs, Ys, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x2,
x3,
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x3,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x2,
x3,
x4,
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg(
x1,
x2,
x3)
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
REVERSE_IN_AG(
x1,
x2) =
REVERSE_IN_AG(
x2)
U2_AG(
x1,
x2,
x3,
x4) =
U2_AG(
x3,
x4)
REVERSE_IN_AA(
x1,
x2) =
REVERSE_IN_AA
U2_AA(
x1,
x2,
x3,
x4) =
U2_AA(
x4)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x2,
x4)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4,
x5) =
U1_GGA(
x2,
x3,
x5)
U3_AG(
x1,
x2,
x3,
x4) =
U3_AG(
x2,
x3,
x4)
APP_IN_GGG(
x1,
x2,
x3) =
APP_IN_GGG(
x1,
x2,
x3)
U1_GGG(
x1,
x2,
x3,
x4,
x5) =
U1_GGG(
x2,
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(32) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 9 less nodes.
(33) Complex Obligation (AND)
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGG(Xs, Ys, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x2,
x3,
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x3,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x2,
x3,
x4,
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg(
x1,
x2,
x3)
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
APP_IN_GGG(
x1,
x2,
x3) =
APP_IN_GGG(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(35) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGG(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
APP_IN_GGG(
x1,
x2,
x3) =
APP_IN_GGG(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(37) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP_IN_GGG(.(Xs), Ys, .(Zs)) → APP_IN_GGG(Xs, Ys, Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(39) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP_IN_GGG(.(Xs), Ys, .(Zs)) → APP_IN_GGG(Xs, Ys, Zs)
The graph contains the following edges 1 > 1, 2 >= 2, 3 > 3
(40) TRUE
(41) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x2,
x3,
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x3,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x2,
x3,
x4,
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg(
x1,
x2,
x3)
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(42) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(43) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
APP_IN_GGA(
x1,
x2,
x3) =
APP_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(44) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP_IN_GGA(.(Xs), Ys) → APP_IN_GGA(Xs, Ys)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(46) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP_IN_GGA(.(Xs), Ys) → APP_IN_GGA(Xs, Ys)
The graph contains the following edges 1 > 1, 2 >= 2
(47) TRUE
(48) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AA(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
The TRS R consists of the following rules:
reverse_in_ag(.(X, Xs), Ys) → U2_ag(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa(.(X, Xs), Ys) → U2_aa(X, Xs, Ys, reverse_in_aa(Xs, Zs))
reverse_in_aa([], []) → reverse_out_aa([], [])
U2_aa(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_aa(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys))
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_gga([], Ys, Ys) → app_out_gga([], Ys, Ys)
U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U3_aa(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) → reverse_out_aa(.(X, Xs), Ys)
U2_ag(X, Xs, Ys, reverse_out_aa(Xs, Zs)) → U3_ag(X, Xs, Ys, app_in_ggg(Zs, .(X, []), Ys))
app_in_ggg(.(X, Xs), Ys, .(X, Zs)) → U1_ggg(X, Xs, Ys, Zs, app_in_ggg(Xs, Ys, Zs))
app_in_ggg([], Ys, Ys) → app_out_ggg([], Ys, Ys)
U1_ggg(X, Xs, Ys, Zs, app_out_ggg(Xs, Ys, Zs)) → app_out_ggg(.(X, Xs), Ys, .(X, Zs))
U3_ag(X, Xs, Ys, app_out_ggg(Zs, .(X, []), Ys)) → reverse_out_ag(.(X, Xs), Ys)
reverse_in_ag([], []) → reverse_out_ag([], [])
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U2_ag(
x1,
x2,
x3,
x4) =
U2_ag(
x3,
x4)
reverse_in_aa(
x1,
x2) =
reverse_in_aa
U2_aa(
x1,
x2,
x3,
x4) =
U2_aa(
x4)
reverse_out_aa(
x1,
x2) =
reverse_out_aa(
x1,
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x2,
x4)
app_in_gga(
x1,
x2,
x3) =
app_in_gga(
x1,
x2)
.(
x1,
x2) =
.(
x2)
U1_gga(
x1,
x2,
x3,
x4,
x5) =
U1_gga(
x2,
x3,
x5)
[] =
[]
app_out_gga(
x1,
x2,
x3) =
app_out_gga(
x1,
x2,
x3)
U3_ag(
x1,
x2,
x3,
x4) =
U3_ag(
x2,
x3,
x4)
app_in_ggg(
x1,
x2,
x3) =
app_in_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3,
x4,
x5) =
U1_ggg(
x2,
x3,
x4,
x5)
app_out_ggg(
x1,
x2,
x3) =
app_out_ggg(
x1,
x2,
x3)
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
REVERSE_IN_AA(
x1,
x2) =
REVERSE_IN_AA
We have to consider all (P,R,Pi)-chains
(49) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(50) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AA(.(X, Xs), Ys) → REVERSE_IN_AA(Xs, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
REVERSE_IN_AA(
x1,
x2) =
REVERSE_IN_AA
We have to consider all (P,R,Pi)-chains
(51) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AA → REVERSE_IN_AA
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(53) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
REVERSE_IN_AA evaluates to t =
REVERSE_IN_AAThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from REVERSE_IN_AA to REVERSE_IN_AA.
(54) FALSE