(0) Obligation:
Clauses:
member(X, .(Y, Xs)) :- member(X, Xs).
member(X, .(X, Xs)).
Queries:
member(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
member_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(Y, Xs)) → U1_AG(X, Y, Xs, member_in_ag(X, Xs))
MEMBER_IN_AG(X, .(Y, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(Y, Xs)) → U1_AG(X, Y, Xs, member_in_ag(X, Xs))
MEMBER_IN_AG(X, .(Y, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(Y, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(Y, Xs)) → MEMBER_IN_AG(X, Xs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(.(Y, Xs)) → MEMBER_IN_AG(Xs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MEMBER_IN_AG(.(Y, Xs)) → MEMBER_IN_AG(Xs)
The graph contains the following edges 1 > 1
(12) TRUE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
member_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x2,
x3,
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x2,
x3,
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1,
x2)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(Y, Xs)) → U1_AG(X, Y, Xs, member_in_ag(X, Xs))
MEMBER_IN_AG(X, .(Y, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x2,
x3,
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1,
x2)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x2,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(Y, Xs)) → U1_AG(X, Y, Xs, member_in_ag(X, Xs))
MEMBER_IN_AG(X, .(Y, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x2,
x3,
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1,
x2)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4) =
U1_AG(
x2,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(Y, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(Y, Xs)) → U1_ag(X, Y, Xs, member_in_ag(X, Xs))
member_in_ag(X, .(X, Xs)) → member_out_ag(X, .(X, Xs))
U1_ag(X, Y, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(Y, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ag(
x1,
x2,
x3,
x4) =
U1_ag(
x2,
x3,
x4)
member_out_ag(
x1,
x2) =
member_out_ag(
x1,
x2)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(Y, Xs)) → MEMBER_IN_AG(X, Xs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(.(Y, Xs)) → MEMBER_IN_AG(Xs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.