(0) Obligation:
Clauses:
even(s(s(X))) :- even(X).
even(0).
lte(s(X), s(Y)) :- lte(X, Y).
lte(0, Y).
goal :- ','(lte(X, s(s(s(s(0))))), even(X)).
Queries:
goal().
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
lte_in: (f,b)
even_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
even_out_g(
x1) =
even_out_g
goal_out_ =
goal_out_
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
even_out_g(
x1) =
even_out_g
goal_out_ =
goal_out_
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOAL_IN_ → U3_1(lte_in_ag(X, s(s(s(s(0))))))
GOAL_IN_ → LTE_IN_AG(X, s(s(s(s(0)))))
LTE_IN_AG(s(X), s(Y)) → U2_AG(X, Y, lte_in_ag(X, Y))
LTE_IN_AG(s(X), s(Y)) → LTE_IN_AG(X, Y)
U3_1(lte_out_ag(X, s(s(s(s(0)))))) → U4_1(even_in_g(X))
U3_1(lte_out_ag(X, s(s(s(s(0)))))) → EVEN_IN_G(X)
EVEN_IN_G(s(s(X))) → U1_G(X, even_in_g(X))
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
even_out_g(
x1) =
even_out_g
goal_out_ =
goal_out_
GOAL_IN_ =
GOAL_IN_
U3_1(
x1) =
U3_1(
x1)
LTE_IN_AG(
x1,
x2) =
LTE_IN_AG(
x2)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x3)
U4_1(
x1) =
U4_1(
x1)
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOAL_IN_ → U3_1(lte_in_ag(X, s(s(s(s(0))))))
GOAL_IN_ → LTE_IN_AG(X, s(s(s(s(0)))))
LTE_IN_AG(s(X), s(Y)) → U2_AG(X, Y, lte_in_ag(X, Y))
LTE_IN_AG(s(X), s(Y)) → LTE_IN_AG(X, Y)
U3_1(lte_out_ag(X, s(s(s(s(0)))))) → U4_1(even_in_g(X))
U3_1(lte_out_ag(X, s(s(s(s(0)))))) → EVEN_IN_G(X)
EVEN_IN_G(s(s(X))) → U1_G(X, even_in_g(X))
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
even_out_g(
x1) =
even_out_g
goal_out_ =
goal_out_
GOAL_IN_ =
GOAL_IN_
U3_1(
x1) =
U3_1(
x1)
LTE_IN_AG(
x1,
x2) =
LTE_IN_AG(
x2)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x3)
U4_1(
x1) =
U4_1(
x1)
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
even_out_g(
x1) =
even_out_g
goal_out_ =
goal_out_
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
The graph contains the following edges 1 > 1
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LTE_IN_AG(s(X), s(Y)) → LTE_IN_AG(X, Y)
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
even_out_g(
x1) =
even_out_g
goal_out_ =
goal_out_
LTE_IN_AG(
x1,
x2) =
LTE_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LTE_IN_AG(s(X), s(Y)) → LTE_IN_AG(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
LTE_IN_AG(
x1,
x2) =
LTE_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LTE_IN_AG(s(Y)) → LTE_IN_AG(Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LTE_IN_AG(s(Y)) → LTE_IN_AG(Y)
The graph contains the following edges 1 > 1
(20) TRUE
(21) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
lte_in: (f,b)
even_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1,
x2)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
even_out_g(
x1) =
even_out_g(
x1)
goal_out_ =
goal_out_
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(22) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1,
x2)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
even_out_g(
x1) =
even_out_g(
x1)
goal_out_ =
goal_out_
(23) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOAL_IN_ → U3_1(lte_in_ag(X, s(s(s(s(0))))))
GOAL_IN_ → LTE_IN_AG(X, s(s(s(s(0)))))
LTE_IN_AG(s(X), s(Y)) → U2_AG(X, Y, lte_in_ag(X, Y))
LTE_IN_AG(s(X), s(Y)) → LTE_IN_AG(X, Y)
U3_1(lte_out_ag(X, s(s(s(s(0)))))) → U4_1(even_in_g(X))
U3_1(lte_out_ag(X, s(s(s(s(0)))))) → EVEN_IN_G(X)
EVEN_IN_G(s(s(X))) → U1_G(X, even_in_g(X))
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1,
x2)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
even_out_g(
x1) =
even_out_g(
x1)
goal_out_ =
goal_out_
GOAL_IN_ =
GOAL_IN_
U3_1(
x1) =
U3_1(
x1)
LTE_IN_AG(
x1,
x2) =
LTE_IN_AG(
x2)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x2,
x3)
U4_1(
x1) =
U4_1(
x1)
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(24) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOAL_IN_ → U3_1(lte_in_ag(X, s(s(s(s(0))))))
GOAL_IN_ → LTE_IN_AG(X, s(s(s(s(0)))))
LTE_IN_AG(s(X), s(Y)) → U2_AG(X, Y, lte_in_ag(X, Y))
LTE_IN_AG(s(X), s(Y)) → LTE_IN_AG(X, Y)
U3_1(lte_out_ag(X, s(s(s(s(0)))))) → U4_1(even_in_g(X))
U3_1(lte_out_ag(X, s(s(s(s(0)))))) → EVEN_IN_G(X)
EVEN_IN_G(s(s(X))) → U1_G(X, even_in_g(X))
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1,
x2)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
even_out_g(
x1) =
even_out_g(
x1)
goal_out_ =
goal_out_
GOAL_IN_ =
GOAL_IN_
U3_1(
x1) =
U3_1(
x1)
LTE_IN_AG(
x1,
x2) =
LTE_IN_AG(
x2)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x2,
x3)
U4_1(
x1) =
U4_1(
x1)
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(26) Complex Obligation (AND)
(27) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1,
x2)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
even_out_g(
x1) =
even_out_g(
x1)
goal_out_ =
goal_out_
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(28) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(29) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(30) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(32) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EVEN_IN_G(s(s(X))) → EVEN_IN_G(X)
The graph contains the following edges 1 > 1
(33) TRUE
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LTE_IN_AG(s(X), s(Y)) → LTE_IN_AG(X, Y)
The TRS R consists of the following rules:
goal_in_ → U3_(lte_in_ag(X, s(s(s(s(0))))))
lte_in_ag(s(X), s(Y)) → U2_ag(X, Y, lte_in_ag(X, Y))
lte_in_ag(0, Y) → lte_out_ag(0, Y)
U2_ag(X, Y, lte_out_ag(X, Y)) → lte_out_ag(s(X), s(Y))
U3_(lte_out_ag(X, s(s(s(s(0)))))) → U4_(even_in_g(X))
even_in_g(s(s(X))) → U1_g(X, even_in_g(X))
even_in_g(0) → even_out_g(0)
U1_g(X, even_out_g(X)) → even_out_g(s(s(X)))
U4_(even_out_g(X)) → goal_out_
The argument filtering Pi contains the following mapping:
goal_in_ =
goal_in_
U3_(
x1) =
U3_(
x1)
lte_in_ag(
x1,
x2) =
lte_in_ag(
x2)
s(
x1) =
s(
x1)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x2,
x3)
lte_out_ag(
x1,
x2) =
lte_out_ag(
x1,
x2)
0 =
0
U4_(
x1) =
U4_(
x1)
even_in_g(
x1) =
even_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
even_out_g(
x1) =
even_out_g(
x1)
goal_out_ =
goal_out_
LTE_IN_AG(
x1,
x2) =
LTE_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(35) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LTE_IN_AG(s(X), s(Y)) → LTE_IN_AG(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
LTE_IN_AG(
x1,
x2) =
LTE_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(37) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LTE_IN_AG(s(Y)) → LTE_IN_AG(Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.