(0) Obligation:
Clauses:
mergesort([], []).
mergesort(.(X, []), .(X, [])).
mergesort(.(X, .(Y, Xs)), Ys) :- ','(split(.(X, .(Y, Xs)), X1s, X2s), ','(mergesort(X1s, Y1s), ','(mergesort(X2s, Y2s), merge(Y1s, Y2s, Ys)))).
split([], [], []).
split(.(X, Xs), .(X, Ys), Zs) :- split(Xs, Zs, Ys).
merge([], Xs, Xs).
merge(Xs, [], Xs).
merge(.(X, Xs), .(Y, Ys), .(X, Zs)) :- ','(=(X, Y), merge(.(X, Xs), Ys, Zs)).
Queries:
mergesort(g,a).
(1) PredefinedPredicateTransformerProof (SOUND transformation)
Added definitions of predefined predicates [PROLOG].
(2) Obligation:
Clauses:
mergesort([], []).
mergesort(.(X, []), .(X, [])).
mergesort(.(X, .(Y, Xs)), Ys) :- ','(split(.(X, .(Y, Xs)), X1s, X2s), ','(mergesort(X1s, Y1s), ','(mergesort(X2s, Y2s), merge(Y1s, Y2s, Ys)))).
split([], [], []).
split(.(X, Xs), .(X, Ys), Zs) :- split(Xs, Zs, Ys).
merge([], Xs, Xs).
merge(Xs, [], Xs).
merge(.(X, Xs), .(Y, Ys), .(X, Zs)) :- ','(=(X, Y), merge(.(X, Xs), Ys, Zs)).
=(X, X).
Queries:
mergesort(g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
mergesort_in: (b,f)
split_in: (b,f,f)
merge_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x6)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x6)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → U1_GA(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → SPLIT_IN_GAA(.(X, .(Y, Xs)), X1s, X2s)
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → U5_GAA(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → SPLIT_IN_GAA(Xs, Zs, Ys)
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_GA(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → MERGESORT_IN_GA(X1s, Y1s)
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_GA(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → MERGESORT_IN_GA(X2s, Y2s)
U3_GA(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_GA(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
U3_GA(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → MERGE_IN_GGA(Y1s, Y2s, Ys)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_GGA(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → =_IN_GG(X, Y)
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_GGA(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys, Zs)
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x6)
MERGESORT_IN_GA(
x1,
x2) =
MERGESORT_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x5)
SPLIT_IN_GAA(
x1,
x2,
x3) =
SPLIT_IN_GAA(
x1)
U5_GAA(
x1,
x2,
x3,
x4,
x5) =
U5_GAA(
x1,
x5)
U2_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GA(
x5,
x6)
U3_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_GA(
x5,
x6)
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x5)
MERGE_IN_GGA(
x1,
x2,
x3) =
MERGE_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGA(
x1,
x2,
x4,
x6)
=_IN_GG(
x1,
x2) =
=_IN_GG(
x1,
x2)
U7_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_GGA(
x1,
x6)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → U1_GA(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → SPLIT_IN_GAA(.(X, .(Y, Xs)), X1s, X2s)
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → U5_GAA(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → SPLIT_IN_GAA(Xs, Zs, Ys)
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_GA(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → MERGESORT_IN_GA(X1s, Y1s)
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_GA(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → MERGESORT_IN_GA(X2s, Y2s)
U3_GA(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_GA(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
U3_GA(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → MERGE_IN_GGA(Y1s, Y2s, Ys)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_GGA(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → =_IN_GG(X, Y)
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_GGA(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys, Zs)
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x6)
MERGESORT_IN_GA(
x1,
x2) =
MERGESORT_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x5)
SPLIT_IN_GAA(
x1,
x2,
x3) =
SPLIT_IN_GAA(
x1)
U5_GAA(
x1,
x2,
x3,
x4,
x5) =
U5_GAA(
x1,
x5)
U2_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GA(
x5,
x6)
U3_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_GA(
x5,
x6)
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x5)
MERGE_IN_GGA(
x1,
x2,
x3) =
MERGE_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGA(
x1,
x2,
x4,
x6)
=_IN_GG(
x1,
x2) =
=_IN_GG(
x1,
x2)
U7_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_GGA(
x1,
x6)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 7 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys, Zs)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_GGA(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x6)
MERGE_IN_GGA(
x1,
x2,
x3) =
MERGE_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGA(
x1,
x2,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys, Zs)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_GGA(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
The TRS R consists of the following rules:
=_in_gg(X, X) → =_out_gg(X, X)
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
MERGE_IN_GGA(
x1,
x2,
x3) =
MERGE_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGA(
x1,
x2,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Xs, Ys, =_out_gg) → MERGE_IN_GGA(.(X, Xs), Ys)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys)) → U6_GGA(X, Xs, Ys, =_in_gg(X, Y))
The TRS R consists of the following rules:
=_in_gg(X, X) → =_out_gg
The set Q consists of the following terms:
=_in_gg(x0, x1)
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MERGE_IN_GGA(.(X, Xs), .(Y, Ys)) → U6_GGA(X, Xs, Ys, =_in_gg(X, Y))
The graph contains the following edges 1 > 1, 1 > 2, 2 > 3
- U6_GGA(X, Xs, Ys, =_out_gg) → MERGE_IN_GGA(.(X, Xs), Ys)
The graph contains the following edges 3 >= 2
(15) TRUE
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → SPLIT_IN_GAA(Xs, Zs, Ys)
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x6)
SPLIT_IN_GAA(
x1,
x2,
x3) =
SPLIT_IN_GAA(
x1)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → SPLIT_IN_GAA(Xs, Zs, Ys)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
SPLIT_IN_GAA(
x1,
x2,
x3) =
SPLIT_IN_GAA(
x1)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SPLIT_IN_GAA(.(X, Xs)) → SPLIT_IN_GAA(Xs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SPLIT_IN_GAA(.(X, Xs)) → SPLIT_IN_GAA(Xs)
The graph contains the following edges 1 > 1
(22) TRUE
(23) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_GA(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → MERGESORT_IN_GA(X2s, Y2s)
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → U1_GA(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → MERGESORT_IN_GA(X1s, Y1s)
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x6)
MERGESORT_IN_GA(
x1,
x2) =
MERGESORT_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x5)
U2_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GA(
x5,
x6)
We have to consider all (P,R,Pi)-chains
(24) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GA(split_out_gaa(X1s, X2s)) → U2_GA(X2s, mergesort_in_ga(X1s))
U2_GA(X2s, mergesort_out_ga(Y1s)) → MERGESORT_IN_GA(X2s)
MERGESORT_IN_GA(.(X, .(Y, Xs))) → U1_GA(split_in_gaa(.(X, .(Y, Xs))))
U1_GA(split_out_gaa(X1s, X2s)) → MERGESORT_IN_GA(X1s)
The TRS R consists of the following rules:
mergesort_in_ga([]) → mergesort_out_ga([])
mergesort_in_ga(.(X, [])) → mergesort_out_ga(.(X, []))
mergesort_in_ga(.(X, .(Y, Xs))) → U1_ga(split_in_gaa(.(X, .(Y, Xs))))
split_in_gaa([]) → split_out_gaa([], [])
split_in_gaa(.(X, Xs)) → U5_gaa(X, split_in_gaa(Xs))
U5_gaa(X, split_out_gaa(Zs, Ys)) → split_out_gaa(.(X, Ys), Zs)
U1_ga(split_out_gaa(X1s, X2s)) → U2_ga(X2s, mergesort_in_ga(X1s))
U2_ga(X2s, mergesort_out_ga(Y1s)) → U3_ga(Y1s, mergesort_in_ga(X2s))
U3_ga(Y1s, mergesort_out_ga(Y2s)) → U4_ga(merge_in_gga(Y1s, Y2s))
merge_in_gga([], Xs) → merge_out_gga(Xs)
merge_in_gga(Xs, []) → merge_out_gga(Xs)
merge_in_gga(.(X, Xs), .(Y, Ys)) → U6_gga(X, Xs, Ys, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg
U6_gga(X, Xs, Ys, =_out_gg) → U7_gga(X, merge_in_gga(.(X, Xs), Ys))
U7_gga(X, merge_out_gga(Zs)) → merge_out_gga(.(X, Zs))
U4_ga(merge_out_gga(Ys)) → mergesort_out_ga(Ys)
The set Q consists of the following terms:
mergesort_in_ga(x0)
split_in_gaa(x0)
U5_gaa(x0, x1)
U1_ga(x0)
U2_ga(x0, x1)
U3_ga(x0, x1)
merge_in_gga(x0, x1)
=_in_gg(x0, x1)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
U4_ga(x0)
We have to consider all (P,Q,R)-chains.
(26) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U2_GA(X2s, mergesort_out_ga(Y1s)) → MERGESORT_IN_GA(X2s)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(split_out_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U2_GA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(mergesort_in_ga(x1)) = | | + | | · | x1 |
POL(mergesort_out_ga(x1)) = | | + | | · | x1 |
POL(MERGESORT_IN_GA(x1)) = | 0 | + | | · | x1 |
POL(.(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(split_in_gaa(x1)) = | | + | | · | x1 |
POL(U5_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U2_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U3_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(merge_in_gga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(merge_out_gga(x1)) = | | + | | · | x1 |
POL(U6_gga(x1, x2, x3, x4)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(=_in_gg(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U7_gga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
mergesort_in_ga([]) → mergesort_out_ga([])
mergesort_in_ga(.(X, [])) → mergesort_out_ga(.(X, []))
mergesort_in_ga(.(X, .(Y, Xs))) → U1_ga(split_in_gaa(.(X, .(Y, Xs))))
split_in_gaa(.(X, Xs)) → U5_gaa(X, split_in_gaa(Xs))
U1_ga(split_out_gaa(X1s, X2s)) → U2_ga(X2s, mergesort_in_ga(X1s))
U2_ga(X2s, mergesort_out_ga(Y1s)) → U3_ga(Y1s, mergesort_in_ga(X2s))
U3_ga(Y1s, mergesort_out_ga(Y2s)) → U4_ga(merge_in_gga(Y1s, Y2s))
split_in_gaa([]) → split_out_gaa([], [])
U5_gaa(X, split_out_gaa(Zs, Ys)) → split_out_gaa(.(X, Ys), Zs)
U4_ga(merge_out_gga(Ys)) → mergesort_out_ga(Ys)
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GA(split_out_gaa(X1s, X2s)) → U2_GA(X2s, mergesort_in_ga(X1s))
MERGESORT_IN_GA(.(X, .(Y, Xs))) → U1_GA(split_in_gaa(.(X, .(Y, Xs))))
U1_GA(split_out_gaa(X1s, X2s)) → MERGESORT_IN_GA(X1s)
The TRS R consists of the following rules:
mergesort_in_ga([]) → mergesort_out_ga([])
mergesort_in_ga(.(X, [])) → mergesort_out_ga(.(X, []))
mergesort_in_ga(.(X, .(Y, Xs))) → U1_ga(split_in_gaa(.(X, .(Y, Xs))))
split_in_gaa([]) → split_out_gaa([], [])
split_in_gaa(.(X, Xs)) → U5_gaa(X, split_in_gaa(Xs))
U5_gaa(X, split_out_gaa(Zs, Ys)) → split_out_gaa(.(X, Ys), Zs)
U1_ga(split_out_gaa(X1s, X2s)) → U2_ga(X2s, mergesort_in_ga(X1s))
U2_ga(X2s, mergesort_out_ga(Y1s)) → U3_ga(Y1s, mergesort_in_ga(X2s))
U3_ga(Y1s, mergesort_out_ga(Y2s)) → U4_ga(merge_in_gga(Y1s, Y2s))
merge_in_gga([], Xs) → merge_out_gga(Xs)
merge_in_gga(Xs, []) → merge_out_gga(Xs)
merge_in_gga(.(X, Xs), .(Y, Ys)) → U6_gga(X, Xs, Ys, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg
U6_gga(X, Xs, Ys, =_out_gg) → U7_gga(X, merge_in_gga(.(X, Xs), Ys))
U7_gga(X, merge_out_gga(Zs)) → merge_out_gga(.(X, Zs))
U4_ga(merge_out_gga(Ys)) → mergesort_out_ga(Ys)
The set Q consists of the following terms:
mergesort_in_ga(x0)
split_in_gaa(x0)
U5_gaa(x0, x1)
U1_ga(x0)
U2_ga(x0, x1)
U3_ga(x0, x1)
merge_in_gga(x0, x1)
=_in_gg(x0, x1)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
U4_ga(x0)
We have to consider all (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GA(split_out_gaa(X1s, X2s)) → MERGESORT_IN_GA(X1s)
MERGESORT_IN_GA(.(X, .(Y, Xs))) → U1_GA(split_in_gaa(.(X, .(Y, Xs))))
The TRS R consists of the following rules:
mergesort_in_ga([]) → mergesort_out_ga([])
mergesort_in_ga(.(X, [])) → mergesort_out_ga(.(X, []))
mergesort_in_ga(.(X, .(Y, Xs))) → U1_ga(split_in_gaa(.(X, .(Y, Xs))))
split_in_gaa([]) → split_out_gaa([], [])
split_in_gaa(.(X, Xs)) → U5_gaa(X, split_in_gaa(Xs))
U5_gaa(X, split_out_gaa(Zs, Ys)) → split_out_gaa(.(X, Ys), Zs)
U1_ga(split_out_gaa(X1s, X2s)) → U2_ga(X2s, mergesort_in_ga(X1s))
U2_ga(X2s, mergesort_out_ga(Y1s)) → U3_ga(Y1s, mergesort_in_ga(X2s))
U3_ga(Y1s, mergesort_out_ga(Y2s)) → U4_ga(merge_in_gga(Y1s, Y2s))
merge_in_gga([], Xs) → merge_out_gga(Xs)
merge_in_gga(Xs, []) → merge_out_gga(Xs)
merge_in_gga(.(X, Xs), .(Y, Ys)) → U6_gga(X, Xs, Ys, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg
U6_gga(X, Xs, Ys, =_out_gg) → U7_gga(X, merge_in_gga(.(X, Xs), Ys))
U7_gga(X, merge_out_gga(Zs)) → merge_out_gga(.(X, Zs))
U4_ga(merge_out_gga(Ys)) → mergesort_out_ga(Ys)
The set Q consists of the following terms:
mergesort_in_ga(x0)
split_in_gaa(x0)
U5_gaa(x0, x1)
U1_ga(x0)
U2_ga(x0, x1)
U3_ga(x0, x1)
merge_in_gga(x0, x1)
=_in_gg(x0, x1)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
U4_ga(x0)
We have to consider all (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GA(split_out_gaa(X1s, X2s)) → MERGESORT_IN_GA(X1s)
MERGESORT_IN_GA(.(X, .(Y, Xs))) → U1_GA(split_in_gaa(.(X, .(Y, Xs))))
The TRS R consists of the following rules:
split_in_gaa(.(X, Xs)) → U5_gaa(X, split_in_gaa(Xs))
split_in_gaa([]) → split_out_gaa([], [])
U5_gaa(X, split_out_gaa(Zs, Ys)) → split_out_gaa(.(X, Ys), Zs)
The set Q consists of the following terms:
mergesort_in_ga(x0)
split_in_gaa(x0)
U5_gaa(x0, x1)
U1_ga(x0)
U2_ga(x0, x1)
U3_ga(x0, x1)
merge_in_gga(x0, x1)
=_in_gg(x0, x1)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
U4_ga(x0)
We have to consider all (P,Q,R)-chains.
(32) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
mergesort_in_ga(x0)
U1_ga(x0)
U2_ga(x0, x1)
U3_ga(x0, x1)
merge_in_gga(x0, x1)
=_in_gg(x0, x1)
U6_gga(x0, x1, x2, x3)
U7_gga(x0, x1)
U4_ga(x0)
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GA(split_out_gaa(X1s, X2s)) → MERGESORT_IN_GA(X1s)
MERGESORT_IN_GA(.(X, .(Y, Xs))) → U1_GA(split_in_gaa(.(X, .(Y, Xs))))
The TRS R consists of the following rules:
split_in_gaa(.(X, Xs)) → U5_gaa(X, split_in_gaa(Xs))
split_in_gaa([]) → split_out_gaa([], [])
U5_gaa(X, split_out_gaa(Zs, Ys)) → split_out_gaa(.(X, Ys), Zs)
The set Q consists of the following terms:
split_in_gaa(x0)
U5_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(34) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U1_GA(split_out_gaa(X1s, X2s)) → MERGESORT_IN_GA(X1s)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(split_out_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(MERGESORT_IN_GA(x1)) = | 0 | + | | · | x1 |
POL(.(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(split_in_gaa(x1)) = | | + | | · | x1 |
POL(U5_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
split_in_gaa(.(X, Xs)) → U5_gaa(X, split_in_gaa(Xs))
split_in_gaa([]) → split_out_gaa([], [])
U5_gaa(X, split_out_gaa(Zs, Ys)) → split_out_gaa(.(X, Ys), Zs)
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MERGESORT_IN_GA(.(X, .(Y, Xs))) → U1_GA(split_in_gaa(.(X, .(Y, Xs))))
The TRS R consists of the following rules:
split_in_gaa(.(X, Xs)) → U5_gaa(X, split_in_gaa(Xs))
split_in_gaa([]) → split_out_gaa([], [])
U5_gaa(X, split_out_gaa(Zs, Ys)) → split_out_gaa(.(X, Ys), Zs)
The set Q consists of the following terms:
split_in_gaa(x0)
U5_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(36) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(37) TRUE
(38) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
mergesort_in: (b,f)
split_in: (b,f,f)
merge_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x1,
x2,
x3,
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x1,
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x2,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x1,
x2,
x3,
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x1,
x2,
x3,
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x2,
x3,
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x3,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x2,
x3,
x4,
x6)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(39) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x1,
x2,
x3,
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x1,
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x2,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x1,
x2,
x3,
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x1,
x2,
x3,
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x2,
x3,
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x3,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x2,
x3,
x4,
x6)
(40) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → U1_GA(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → SPLIT_IN_GAA(.(X, .(Y, Xs)), X1s, X2s)
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → U5_GAA(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → SPLIT_IN_GAA(Xs, Zs, Ys)
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_GA(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → MERGESORT_IN_GA(X1s, Y1s)
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_GA(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → MERGESORT_IN_GA(X2s, Y2s)
U3_GA(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_GA(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
U3_GA(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → MERGE_IN_GGA(Y1s, Y2s, Ys)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_GGA(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → =_IN_GG(X, Y)
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_GGA(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys, Zs)
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x1,
x2,
x3,
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x1,
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x2,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x1,
x2,
x3,
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x1,
x2,
x3,
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x2,
x3,
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x3,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x2,
x3,
x4,
x6)
MERGESORT_IN_GA(
x1,
x2) =
MERGESORT_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x1,
x2,
x3,
x5)
SPLIT_IN_GAA(
x1,
x2,
x3) =
SPLIT_IN_GAA(
x1)
U5_GAA(
x1,
x2,
x3,
x4,
x5) =
U5_GAA(
x1,
x2,
x5)
U2_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GA(
x1,
x2,
x3,
x5,
x6)
U3_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_GA(
x1,
x2,
x3,
x5,
x6)
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x1,
x2,
x3,
x5)
MERGE_IN_GGA(
x1,
x2,
x3) =
MERGE_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGA(
x1,
x2,
x3,
x4,
x6)
=_IN_GG(
x1,
x2) =
=_IN_GG(
x1,
x2)
U7_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_GGA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(41) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → U1_GA(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → SPLIT_IN_GAA(.(X, .(Y, Xs)), X1s, X2s)
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → U5_GAA(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → SPLIT_IN_GAA(Xs, Zs, Ys)
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_GA(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → MERGESORT_IN_GA(X1s, Y1s)
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_GA(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → MERGESORT_IN_GA(X2s, Y2s)
U3_GA(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_GA(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
U3_GA(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → MERGE_IN_GGA(Y1s, Y2s, Ys)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_GGA(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → =_IN_GG(X, Y)
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_GGA(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys, Zs)
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x1,
x2,
x3,
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x1,
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x2,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x1,
x2,
x3,
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x1,
x2,
x3,
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x2,
x3,
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x3,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x2,
x3,
x4,
x6)
MERGESORT_IN_GA(
x1,
x2) =
MERGESORT_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x1,
x2,
x3,
x5)
SPLIT_IN_GAA(
x1,
x2,
x3) =
SPLIT_IN_GAA(
x1)
U5_GAA(
x1,
x2,
x3,
x4,
x5) =
U5_GAA(
x1,
x2,
x5)
U2_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GA(
x1,
x2,
x3,
x5,
x6)
U3_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_GA(
x1,
x2,
x3,
x5,
x6)
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x1,
x2,
x3,
x5)
MERGE_IN_GGA(
x1,
x2,
x3) =
MERGE_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGA(
x1,
x2,
x3,
x4,
x6)
=_IN_GG(
x1,
x2) =
=_IN_GG(
x1,
x2)
U7_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_GGA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(42) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 7 less nodes.
(43) Complex Obligation (AND)
(44) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys, Zs)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_GGA(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x1,
x2,
x3,
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x1,
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x2,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x1,
x2,
x3,
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x1,
x2,
x3,
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x2,
x3,
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x3,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x2,
x3,
x4,
x6)
MERGE_IN_GGA(
x1,
x2,
x3) =
MERGE_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(45) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(46) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys, Zs)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_GGA(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
The TRS R consists of the following rules:
=_in_gg(X, X) → =_out_gg(X, X)
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
MERGE_IN_GGA(
x1,
x2,
x3) =
MERGE_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_GGA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(47) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Xs, Y, Ys, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys)
MERGE_IN_GGA(.(X, Xs), .(Y, Ys)) → U6_GGA(X, Xs, Y, Ys, =_in_gg(X, Y))
The TRS R consists of the following rules:
=_in_gg(X, X) → =_out_gg(X, X)
The set Q consists of the following terms:
=_in_gg(x0, x1)
We have to consider all (P,Q,R)-chains.
(49) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MERGE_IN_GGA(.(X, Xs), .(Y, Ys)) → U6_GGA(X, Xs, Y, Ys, =_in_gg(X, Y))
The graph contains the following edges 1 > 1, 1 > 2, 2 > 3, 2 > 4
- U6_GGA(X, Xs, Y, Ys, =_out_gg(X, Y)) → MERGE_IN_GGA(.(X, Xs), Ys)
The graph contains the following edges 4 >= 2
(50) TRUE
(51) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → SPLIT_IN_GAA(Xs, Zs, Ys)
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x1,
x2,
x3,
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x1,
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x2,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x1,
x2,
x3,
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x1,
x2,
x3,
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x2,
x3,
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x3,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x2,
x3,
x4,
x6)
SPLIT_IN_GAA(
x1,
x2,
x3) =
SPLIT_IN_GAA(
x1)
We have to consider all (P,R,Pi)-chains
(52) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(53) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SPLIT_IN_GAA(.(X, Xs), .(X, Ys), Zs) → SPLIT_IN_GAA(Xs, Zs, Ys)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
SPLIT_IN_GAA(
x1,
x2,
x3) =
SPLIT_IN_GAA(
x1)
We have to consider all (P,R,Pi)-chains
(54) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SPLIT_IN_GAA(.(X, Xs)) → SPLIT_IN_GAA(Xs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(56) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SPLIT_IN_GAA(.(X, Xs)) → SPLIT_IN_GAA(Xs)
The graph contains the following edges 1 > 1
(57) TRUE
(58) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_GA(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_GA(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → MERGESORT_IN_GA(X2s, Y2s)
MERGESORT_IN_GA(.(X, .(Y, Xs)), Ys) → U1_GA(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
U1_GA(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → MERGESORT_IN_GA(X1s, Y1s)
The TRS R consists of the following rules:
mergesort_in_ga([], []) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, []), .(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs)), Ys) → U1_ga(X, Y, Xs, Ys, split_in_gaa(.(X, .(Y, Xs)), X1s, X2s))
split_in_gaa([], [], []) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs), .(X, Ys), Zs) → U5_gaa(X, Xs, Ys, Zs, split_in_gaa(Xs, Zs, Ys))
U5_gaa(X, Xs, Ys, Zs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, Ys, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, Ys, X2s, mergesort_in_ga(X1s, Y1s))
U2_ga(X, Y, Xs, Ys, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Ys, Y1s, mergesort_in_ga(X2s, Y2s))
U3_ga(X, Y, Xs, Ys, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, Ys, merge_in_gga(Y1s, Y2s, Ys))
merge_in_gga([], Xs, Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, [], Xs) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys), .(X, Zs)) → U6_gga(X, Xs, Y, Ys, Zs, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, Zs, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, Zs, merge_in_gga(.(X, Xs), Ys, Zs))
U7_gga(X, Xs, Y, Ys, Zs, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, Ys, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The argument filtering Pi contains the following mapping:
mergesort_in_ga(
x1,
x2) =
mergesort_in_ga(
x1)
[] =
[]
mergesort_out_ga(
x1,
x2) =
mergesort_out_ga(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4,
x5) =
U1_ga(
x1,
x2,
x3,
x5)
split_in_gaa(
x1,
x2,
x3) =
split_in_gaa(
x1)
split_out_gaa(
x1,
x2,
x3) =
split_out_gaa(
x1,
x2,
x3)
U5_gaa(
x1,
x2,
x3,
x4,
x5) =
U5_gaa(
x1,
x2,
x5)
U2_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_ga(
x1,
x2,
x3,
x5,
x6)
U3_ga(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_ga(
x1,
x2,
x3,
x5,
x6)
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x2,
x3,
x5)
merge_in_gga(
x1,
x2,
x3) =
merge_in_gga(
x1,
x2)
merge_out_gga(
x1,
x2,
x3) =
merge_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U6_gga(
x1,
x2,
x3,
x4,
x6)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
U7_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U7_gga(
x1,
x2,
x3,
x4,
x6)
MERGESORT_IN_GA(
x1,
x2) =
MERGESORT_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x1,
x2,
x3,
x5)
U2_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GA(
x1,
x2,
x3,
x5,
x6)
We have to consider all (P,R,Pi)-chains
(59) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GA(X, Y, Xs, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_GA(X, Y, Xs, X2s, mergesort_in_ga(X1s))
U2_GA(X, Y, Xs, X2s, mergesort_out_ga(X1s, Y1s)) → MERGESORT_IN_GA(X2s)
MERGESORT_IN_GA(.(X, .(Y, Xs))) → U1_GA(X, Y, Xs, split_in_gaa(.(X, .(Y, Xs))))
U1_GA(X, Y, Xs, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → MERGESORT_IN_GA(X1s)
The TRS R consists of the following rules:
mergesort_in_ga([]) → mergesort_out_ga([], [])
mergesort_in_ga(.(X, [])) → mergesort_out_ga(.(X, []), .(X, []))
mergesort_in_ga(.(X, .(Y, Xs))) → U1_ga(X, Y, Xs, split_in_gaa(.(X, .(Y, Xs))))
split_in_gaa([]) → split_out_gaa([], [], [])
split_in_gaa(.(X, Xs)) → U5_gaa(X, Xs, split_in_gaa(Xs))
U5_gaa(X, Xs, split_out_gaa(Xs, Zs, Ys)) → split_out_gaa(.(X, Xs), .(X, Ys), Zs)
U1_ga(X, Y, Xs, split_out_gaa(.(X, .(Y, Xs)), X1s, X2s)) → U2_ga(X, Y, Xs, X2s, mergesort_in_ga(X1s))
U2_ga(X, Y, Xs, X2s, mergesort_out_ga(X1s, Y1s)) → U3_ga(X, Y, Xs, Y1s, mergesort_in_ga(X2s))
U3_ga(X, Y, Xs, Y1s, mergesort_out_ga(X2s, Y2s)) → U4_ga(X, Y, Xs, merge_in_gga(Y1s, Y2s))
merge_in_gga([], Xs) → merge_out_gga([], Xs, Xs)
merge_in_gga(Xs, []) → merge_out_gga(Xs, [], Xs)
merge_in_gga(.(X, Xs), .(Y, Ys)) → U6_gga(X, Xs, Y, Ys, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U6_gga(X, Xs, Y, Ys, =_out_gg(X, Y)) → U7_gga(X, Xs, Y, Ys, merge_in_gga(.(X, Xs), Ys))
U7_gga(X, Xs, Y, Ys, merge_out_gga(.(X, Xs), Ys, Zs)) → merge_out_gga(.(X, Xs), .(Y, Ys), .(X, Zs))
U4_ga(X, Y, Xs, merge_out_gga(Y1s, Y2s, Ys)) → mergesort_out_ga(.(X, .(Y, Xs)), Ys)
The set Q consists of the following terms:
mergesort_in_ga(x0)
split_in_gaa(x0)
U5_gaa(x0, x1, x2)
U1_ga(x0, x1, x2, x3)
U2_ga(x0, x1, x2, x3, x4)
U3_ga(x0, x1, x2, x3, x4)
merge_in_gga(x0, x1)
=_in_gg(x0, x1)
U6_gga(x0, x1, x2, x3, x4)
U7_gga(x0, x1, x2, x3, x4)
U4_ga(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.