(0) Obligation:
Clauses:
ackermann(0, N, s(N)).
ackermann(s(M), 0, Val) :- ackermann(M, s(0), Val).
ackermann(s(M), s(N), Val) :- ','(ackermann(s(M), N, Val1), ackermann(M, Val1, Val)).
Queries:
ackermann(g,a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ackermann_in: (b,f,b) (b,b,b) (b,b,f) (b,f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag(
x1,
x3)
U1_gag(
x1,
x2,
x3) =
U1_gag(
x1,
x2,
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x1,
x2,
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x2,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x1,
x2,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag(
x1,
x3)
U1_gag(
x1,
x2,
x3) =
U1_gag(
x1,
x2,
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x1,
x2,
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x2,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x1,
x2,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), 0, Val) → U1_GAG(M, Val, ackermann_in_ggg(M, s(0), Val))
ACKERMANN_IN_GAG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), 0, Val) → U1_GGG(M, Val, ackermann_in_ggg(M, s(0), Val))
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ACKERMANN_IN_GGG(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
ACKERMANN_IN_GGA(s(M), 0, Val) → U1_GGA(M, Val, ackermann_in_gga(M, s(0), Val))
ACKERMANN_IN_GGA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → U2_GGA(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ACKERMANN_IN_GGA(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_GGA(M, N, Val, ackermann_in_gga(M, Val1, Val))
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1, Val)
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_GGG(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), 0, Val) → U1_GAA(M, Val, ackermann_in_gga(M, s(0), Val))
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAA(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAA(M, Val1, Val)
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAG(M, N, Val, ackermann_in_gag(M, Val1, Val))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag(
x1,
x3)
U1_gag(
x1,
x2,
x3) =
U1_gag(
x1,
x2,
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x1,
x2,
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x2,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x1,
x2,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
ACKERMANN_IN_GAG(
x1,
x2,
x3) =
ACKERMANN_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3) =
U1_GAG(
x1,
x2,
x3)
ACKERMANN_IN_GGG(
x1,
x2,
x3) =
ACKERMANN_IN_GGG(
x1,
x2,
x3)
U1_GGG(
x1,
x2,
x3) =
U1_GGG(
x1,
x2,
x3)
U2_GGG(
x1,
x2,
x3,
x4) =
U2_GGG(
x1,
x2,
x3,
x4)
ACKERMANN_IN_GGA(
x1,
x2,
x3) =
ACKERMANN_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x1,
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U3_GGG(
x1,
x2,
x3,
x4) =
U3_GGG(
x1,
x2,
x3,
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
ACKERMANN_IN_GAA(
x1,
x2,
x3) =
ACKERMANN_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x1,
x3)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
U3_GAA(
x1,
x2,
x3,
x4) =
U3_GAA(
x1,
x4)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), 0, Val) → U1_GAG(M, Val, ackermann_in_ggg(M, s(0), Val))
ACKERMANN_IN_GAG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), 0, Val) → U1_GGG(M, Val, ackermann_in_ggg(M, s(0), Val))
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ACKERMANN_IN_GGG(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
ACKERMANN_IN_GGA(s(M), 0, Val) → U1_GGA(M, Val, ackermann_in_gga(M, s(0), Val))
ACKERMANN_IN_GGA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → U2_GGA(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ACKERMANN_IN_GGA(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_GGA(M, N, Val, ackermann_in_gga(M, Val1, Val))
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1, Val)
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_GGG(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), 0, Val) → U1_GAA(M, Val, ackermann_in_gga(M, s(0), Val))
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAA(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAA(M, Val1, Val)
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAG(M, N, Val, ackermann_in_gag(M, Val1, Val))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag(
x1,
x3)
U1_gag(
x1,
x2,
x3) =
U1_gag(
x1,
x2,
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x1,
x2,
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x2,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x1,
x2,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
ACKERMANN_IN_GAG(
x1,
x2,
x3) =
ACKERMANN_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3) =
U1_GAG(
x1,
x2,
x3)
ACKERMANN_IN_GGG(
x1,
x2,
x3) =
ACKERMANN_IN_GGG(
x1,
x2,
x3)
U1_GGG(
x1,
x2,
x3) =
U1_GGG(
x1,
x2,
x3)
U2_GGG(
x1,
x2,
x3,
x4) =
U2_GGG(
x1,
x2,
x3,
x4)
ACKERMANN_IN_GGA(
x1,
x2,
x3) =
ACKERMANN_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x1,
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U3_GGG(
x1,
x2,
x3,
x4) =
U3_GGG(
x1,
x2,
x3,
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
ACKERMANN_IN_GAA(
x1,
x2,
x3) =
ACKERMANN_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x1,
x3)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
U3_GAA(
x1,
x2,
x3,
x4) =
U3_GAA(
x1,
x4)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 12 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → U2_GGA(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1, Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag(
x1,
x3)
U1_gag(
x1,
x2,
x3) =
U1_gag(
x1,
x2,
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x1,
x2,
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x2,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x1,
x2,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
ACKERMANN_IN_GGA(
x1,
x2,
x3) =
ACKERMANN_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → U2_GGA(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1, Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
The TRS R consists of the following rules:
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
ACKERMANN_IN_GGA(
x1,
x2,
x3) =
ACKERMANN_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGA(s(M), 0) → ACKERMANN_IN_GGA(M, s(0))
ACKERMANN_IN_GGA(s(M), s(N)) → U2_GGA(M, N, ackermann_in_gga(s(M), N))
U2_GGA(M, N, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1)
ACKERMANN_IN_GGA(s(M), s(N)) → ACKERMANN_IN_GGA(s(M), N)
The TRS R consists of the following rules:
ackermann_in_gga(s(M), 0) → U1_gga(M, ackermann_in_gga(M, s(0)))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, N, ackermann_in_gga(s(M), N))
U1_gga(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_gga(M, N, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, ackermann_in_gga(M, Val1))
ackermann_in_gga(0, N) → ackermann_out_gga(0, N, s(N))
U3_gga(M, N, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
The set Q consists of the following terms:
ackermann_in_gga(x0, x1)
U1_gga(x0, x1)
U2_gga(x0, x1, x2)
U3_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ACKERMANN_IN_GGA(s(M), s(N)) → ACKERMANN_IN_GGA(s(M), N)
The graph contains the following edges 1 >= 1, 2 > 2
- ACKERMANN_IN_GGA(s(M), s(N)) → U2_GGA(M, N, ackermann_in_gga(s(M), N))
The graph contains the following edges 1 > 1, 2 > 2
- U2_GGA(M, N, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1)
The graph contains the following edges 1 >= 1, 3 > 1, 3 > 2
- ACKERMANN_IN_GGA(s(M), 0) → ACKERMANN_IN_GGA(M, s(0))
The graph contains the following edges 1 > 1
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAA(M, Val1, Val)
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag(
x1,
x3)
U1_gag(
x1,
x2,
x3) =
U1_gag(
x1,
x2,
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x1,
x2,
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x2,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x1,
x2,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
ACKERMANN_IN_GAA(
x1,
x2,
x3) =
ACKERMANN_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAA(M, Val1, Val)
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
The TRS R consists of the following rules:
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
ACKERMANN_IN_GAA(
x1,
x2,
x3) =
ACKERMANN_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → U2_GAA(M, ackermann_in_gaa(s(M)))
U2_GAA(M, ackermann_out_gaa(s(M))) → ACKERMANN_IN_GAA(M)
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
The TRS R consists of the following rules:
ackermann_in_gaa(s(M)) → U1_gaa(M, ackermann_in_gga(M, s(0)))
ackermann_in_gaa(s(M)) → U2_gaa(M, ackermann_in_gaa(s(M)))
U1_gaa(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M))
U2_gaa(M, ackermann_out_gaa(s(M))) → U3_gaa(M, ackermann_in_gaa(M))
ackermann_in_gga(0, N) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, N, ackermann_in_gga(s(M), N))
U3_gaa(M, ackermann_out_gaa(M)) → ackermann_out_gaa(s(M))
U2_gga(M, N, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, ackermann_in_gga(M, Val1))
ackermann_in_gaa(0) → ackermann_out_gaa(0)
ackermann_in_gga(s(M), 0) → U1_gga(M, ackermann_in_gga(M, s(0)))
U3_gga(M, N, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0, x1)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0, x1)
U2_gga(x0, x1, x2)
U3_gga(x0, x1, x2)
U1_gga(x0, x1)
We have to consider all (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U2_GAA(M, ackermann_out_gaa(s(M))) → ACKERMANN_IN_GAA(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(ACKERMANN_IN_GAA(x1)) = | 0 | + | | · | x1 |
POL(U2_GAA(x1, x2)) = | 1 | + | | · | x1 | + | | · | x2 |
POL(ackermann_in_gaa(x1)) = | | + | | · | x1 |
POL(ackermann_out_gaa(x1)) = | | + | | · | x1 |
POL(U1_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(ackermann_in_gga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U2_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U3_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(ackermann_out_gga(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(U2_gga(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(U1_gga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U3_gga(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
The following usable rules [FROCOS05] were oriented:
none
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → U2_GAA(M, ackermann_in_gaa(s(M)))
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
The TRS R consists of the following rules:
ackermann_in_gaa(s(M)) → U1_gaa(M, ackermann_in_gga(M, s(0)))
ackermann_in_gaa(s(M)) → U2_gaa(M, ackermann_in_gaa(s(M)))
U1_gaa(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M))
U2_gaa(M, ackermann_out_gaa(s(M))) → U3_gaa(M, ackermann_in_gaa(M))
ackermann_in_gga(0, N) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, N, ackermann_in_gga(s(M), N))
U3_gaa(M, ackermann_out_gaa(M)) → ackermann_out_gaa(s(M))
U2_gga(M, N, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, ackermann_in_gga(M, Val1))
ackermann_in_gaa(0) → ackermann_out_gaa(0)
ackermann_in_gga(s(M), 0) → U1_gga(M, ackermann_in_gga(M, s(0)))
U3_gga(M, N, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0, x1)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0, x1)
U2_gga(x0, x1, x2)
U3_gga(x0, x1, x2)
U1_gga(x0, x1)
We have to consider all (P,Q,R)-chains.
(21) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
The TRS R consists of the following rules:
ackermann_in_gaa(s(M)) → U1_gaa(M, ackermann_in_gga(M, s(0)))
ackermann_in_gaa(s(M)) → U2_gaa(M, ackermann_in_gaa(s(M)))
U1_gaa(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M))
U2_gaa(M, ackermann_out_gaa(s(M))) → U3_gaa(M, ackermann_in_gaa(M))
ackermann_in_gga(0, N) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, N, ackermann_in_gga(s(M), N))
U3_gaa(M, ackermann_out_gaa(M)) → ackermann_out_gaa(s(M))
U2_gga(M, N, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, ackermann_in_gga(M, Val1))
ackermann_in_gaa(0) → ackermann_out_gaa(0)
ackermann_in_gga(s(M), 0) → U1_gga(M, ackermann_in_gga(M, s(0)))
U3_gga(M, N, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0, x1)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0, x1)
U2_gga(x0, x1, x2)
U3_gga(x0, x1, x2)
U1_gga(x0, x1)
We have to consider all (P,Q,R)-chains.
(23) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
R is empty.
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0, x1)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0, x1)
U2_gga(x0, x1, x2)
U3_gga(x0, x1, x2)
U1_gga(x0, x1)
We have to consider all (P,Q,R)-chains.
(25) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
ackermann_in_gaa(x0)
U1_gaa(x0, x1)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0, x1)
U2_gga(x0, x1, x2)
U3_gga(x0, x1, x2)
U1_gga(x0, x1)
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(27) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
ACKERMANN_IN_GAA(
s(
M)) evaluates to t =
ACKERMANN_IN_GAA(
s(
M))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from ACKERMANN_IN_GAA(s(M)) to ACKERMANN_IN_GAA(s(M)).
(28) FALSE
(29) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag(
x1,
x3)
U1_gag(
x1,
x2,
x3) =
U1_gag(
x1,
x2,
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x1,
x2,
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x2,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x1,
x2,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
ACKERMANN_IN_GGG(
x1,
x2,
x3) =
ACKERMANN_IN_GGG(
x1,
x2,
x3)
U2_GGG(
x1,
x2,
x3,
x4) =
U2_GGG(
x1,
x2,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(30) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(31) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
ACKERMANN_IN_GGG(
x1,
x2,
x3) =
ACKERMANN_IN_GGG(
x1,
x2,
x3)
U2_GGG(
x1,
x2,
x3,
x4) =
U2_GGG(
x1,
x2,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(32) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gga(s(M), 0) → U1_gga(M, ackermann_in_gga(M, s(0)))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, N, ackermann_in_gga(s(M), N))
U1_gga(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_gga(M, N, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, ackermann_in_gga(M, Val1))
ackermann_in_gga(0, N) → ackermann_out_gga(0, N, s(N))
U3_gga(M, N, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
The set Q consists of the following terms:
ackermann_in_gga(x0, x1)
U1_gga(x0, x1)
U2_gga(x0, x1, x2)
U3_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(34) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N))
The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3
- U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
The graph contains the following edges 1 >= 1, 4 > 1, 4 > 2, 3 >= 3
- ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
The graph contains the following edges 1 > 1, 3 >= 3
(35) TRUE
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag(
x1,
x3)
U1_gag(
x1,
x2,
x3) =
U1_gag(
x1,
x2,
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg(
x1,
x2,
x3)
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x1,
x2,
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x2,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x1,
x2,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x1,
x3,
x4)
ACKERMANN_IN_GAG(
x1,
x2,
x3) =
ACKERMANN_IN_GAG(
x1,
x3)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(37) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(38) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x1,
x2,
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
ACKERMANN_IN_GAG(
x1,
x2,
x3) =
ACKERMANN_IN_GAG(
x1,
x3)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(39) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), Val) → U2_GAG(M, Val, ackermann_in_gaa(s(M)))
U2_GAG(M, Val, ackermann_out_gaa(s(M))) → ACKERMANN_IN_GAG(M, Val)
The TRS R consists of the following rules:
ackermann_in_gaa(s(M)) → U1_gaa(M, ackermann_in_gga(M, s(0)))
ackermann_in_gaa(s(M)) → U2_gaa(M, ackermann_in_gaa(s(M)))
U1_gaa(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M))
U2_gaa(M, ackermann_out_gaa(s(M))) → U3_gaa(M, ackermann_in_gaa(M))
ackermann_in_gga(0, N) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, N, ackermann_in_gga(s(M), N))
U3_gaa(M, ackermann_out_gaa(M)) → ackermann_out_gaa(s(M))
U2_gga(M, N, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, ackermann_in_gga(M, Val1))
ackermann_in_gaa(0) → ackermann_out_gaa(0)
ackermann_in_gga(s(M), 0) → U1_gga(M, ackermann_in_gga(M, s(0)))
U3_gga(M, N, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0, x1)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0, x1)
U2_gga(x0, x1, x2)
U3_gga(x0, x1, x2)
U1_gga(x0, x1)
We have to consider all (P,Q,R)-chains.
(41) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U2_GAG(M, Val, ackermann_out_gaa(s(M))) → ACKERMANN_IN_GAG(M, Val)
The graph contains the following edges 1 >= 1, 3 > 1, 2 >= 2
- ACKERMANN_IN_GAG(s(M), Val) → U2_GAG(M, Val, ackermann_in_gaa(s(M)))
The graph contains the following edges 1 > 1, 2 >= 2
(42) TRUE
(43) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ackermann_in: (b,f,b) (b,b,b) (b,b,f) (b,f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag
U1_gag(
x1,
x2,
x3) =
U1_gag(
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(44) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag
U1_gag(
x1,
x2,
x3) =
U1_gag(
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
(45) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), 0, Val) → U1_GAG(M, Val, ackermann_in_ggg(M, s(0), Val))
ACKERMANN_IN_GAG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), 0, Val) → U1_GGG(M, Val, ackermann_in_ggg(M, s(0), Val))
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ACKERMANN_IN_GGG(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
ACKERMANN_IN_GGA(s(M), 0, Val) → U1_GGA(M, Val, ackermann_in_gga(M, s(0), Val))
ACKERMANN_IN_GGA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → U2_GGA(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ACKERMANN_IN_GGA(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_GGA(M, N, Val, ackermann_in_gga(M, Val1, Val))
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1, Val)
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_GGG(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), 0, Val) → U1_GAA(M, Val, ackermann_in_gga(M, s(0), Val))
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAA(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAA(M, Val1, Val)
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAG(M, N, Val, ackermann_in_gag(M, Val1, Val))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag
U1_gag(
x1,
x2,
x3) =
U1_gag(
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
ACKERMANN_IN_GAG(
x1,
x2,
x3) =
ACKERMANN_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3) =
U1_GAG(
x3)
ACKERMANN_IN_GGG(
x1,
x2,
x3) =
ACKERMANN_IN_GGG(
x1,
x2,
x3)
U1_GGG(
x1,
x2,
x3) =
U1_GGG(
x3)
U2_GGG(
x1,
x2,
x3,
x4) =
U2_GGG(
x1,
x3,
x4)
ACKERMANN_IN_GGA(
x1,
x2,
x3) =
ACKERMANN_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x4)
U3_GGG(
x1,
x2,
x3,
x4) =
U3_GGG(
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
ACKERMANN_IN_GAA(
x1,
x2,
x3) =
ACKERMANN_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x3)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
U3_GAA(
x1,
x2,
x3,
x4) =
U3_GAA(
x4)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x4)
We have to consider all (P,R,Pi)-chains
(46) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), 0, Val) → U1_GAG(M, Val, ackermann_in_ggg(M, s(0), Val))
ACKERMANN_IN_GAG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), 0, Val) → U1_GGG(M, Val, ackermann_in_ggg(M, s(0), Val))
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ACKERMANN_IN_GGG(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
ACKERMANN_IN_GGA(s(M), 0, Val) → U1_GGA(M, Val, ackermann_in_gga(M, s(0), Val))
ACKERMANN_IN_GGA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → U2_GGA(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ACKERMANN_IN_GGA(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_GGA(M, N, Val, ackermann_in_gga(M, Val1, Val))
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1, Val)
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_GGG(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAG(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
ACKERMANN_IN_GAA(s(M), 0, Val) → U1_GAA(M, Val, ackermann_in_gga(M, s(0), Val))
ACKERMANN_IN_GAA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAA(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAA(M, Val1, Val)
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_GAG(M, N, Val, ackermann_in_gag(M, Val1, Val))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag
U1_gag(
x1,
x2,
x3) =
U1_gag(
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
ACKERMANN_IN_GAG(
x1,
x2,
x3) =
ACKERMANN_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3) =
U1_GAG(
x3)
ACKERMANN_IN_GGG(
x1,
x2,
x3) =
ACKERMANN_IN_GGG(
x1,
x2,
x3)
U1_GGG(
x1,
x2,
x3) =
U1_GGG(
x3)
U2_GGG(
x1,
x2,
x3,
x4) =
U2_GGG(
x1,
x3,
x4)
ACKERMANN_IN_GGA(
x1,
x2,
x3) =
ACKERMANN_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x4)
U3_GGG(
x1,
x2,
x3,
x4) =
U3_GGG(
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
ACKERMANN_IN_GAA(
x1,
x2,
x3) =
ACKERMANN_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x3)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
U3_GAA(
x1,
x2,
x3,
x4) =
U3_GAA(
x4)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x4)
We have to consider all (P,R,Pi)-chains
(47) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 12 less nodes.
(48) Complex Obligation (AND)
(49) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → U2_GGA(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1, Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag
U1_gag(
x1,
x2,
x3) =
U1_gag(
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
ACKERMANN_IN_GGA(
x1,
x2,
x3) =
ACKERMANN_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(50) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(51) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGA(s(M), 0, Val) → ACKERMANN_IN_GGA(M, s(0), Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → U2_GGA(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_GGA(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGA(M, Val1, Val)
ACKERMANN_IN_GGA(s(M), s(N), Val) → ACKERMANN_IN_GGA(s(M), N, Val1)
The TRS R consists of the following rules:
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
ACKERMANN_IN_GGA(
x1,
x2,
x3) =
ACKERMANN_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(52) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGA(s(M), 0) → ACKERMANN_IN_GGA(M, s(0))
ACKERMANN_IN_GGA(s(M), s(N)) → U2_GGA(M, ackermann_in_gga(s(M), N))
U2_GGA(M, ackermann_out_gga(Val1)) → ACKERMANN_IN_GGA(M, Val1)
ACKERMANN_IN_GGA(s(M), s(N)) → ACKERMANN_IN_GGA(s(M), N)
The TRS R consists of the following rules:
ackermann_in_gga(s(M), 0) → U1_gga(ackermann_in_gga(M, s(0)))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, ackermann_in_gga(s(M), N))
U1_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
U2_gga(M, ackermann_out_gga(Val1)) → U3_gga(ackermann_in_gga(M, Val1))
ackermann_in_gga(0, N) → ackermann_out_gga(s(N))
U3_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
The set Q consists of the following terms:
ackermann_in_gga(x0, x1)
U1_gga(x0)
U2_gga(x0, x1)
U3_gga(x0)
We have to consider all (P,Q,R)-chains.
(54) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ACKERMANN_IN_GGA(s(M), s(N)) → ACKERMANN_IN_GGA(s(M), N)
The graph contains the following edges 1 >= 1, 2 > 2
- ACKERMANN_IN_GGA(s(M), s(N)) → U2_GGA(M, ackermann_in_gga(s(M), N))
The graph contains the following edges 1 > 1
- U2_GGA(M, ackermann_out_gga(Val1)) → ACKERMANN_IN_GGA(M, Val1)
The graph contains the following edges 1 >= 1, 2 > 2
- ACKERMANN_IN_GGA(s(M), 0) → ACKERMANN_IN_GGA(M, s(0))
The graph contains the following edges 1 > 1
(55) TRUE
(56) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAA(M, Val1, Val)
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag
U1_gag(
x1,
x2,
x3) =
U1_gag(
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
ACKERMANN_IN_GAA(
x1,
x2,
x3) =
ACKERMANN_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(57) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(58) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M), s(N), Val) → U2_GAA(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_GAA(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAA(M, Val1, Val)
ACKERMANN_IN_GAA(s(M), s(N), Val) → ACKERMANN_IN_GAA(s(M), N, Val1)
The TRS R consists of the following rules:
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
ACKERMANN_IN_GAA(
x1,
x2,
x3) =
ACKERMANN_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(59) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → U2_GAA(M, ackermann_in_gaa(s(M)))
U2_GAA(M, ackermann_out_gaa) → ACKERMANN_IN_GAA(M)
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
The TRS R consists of the following rules:
ackermann_in_gaa(s(M)) → U1_gaa(ackermann_in_gga(M, s(0)))
ackermann_in_gaa(s(M)) → U2_gaa(M, ackermann_in_gaa(s(M)))
U1_gaa(ackermann_out_gga(Val)) → ackermann_out_gaa
U2_gaa(M, ackermann_out_gaa) → U3_gaa(ackermann_in_gaa(M))
ackermann_in_gga(0, N) → ackermann_out_gga(s(N))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, ackermann_in_gga(s(M), N))
U3_gaa(ackermann_out_gaa) → ackermann_out_gaa
U2_gga(M, ackermann_out_gga(Val1)) → U3_gga(ackermann_in_gga(M, Val1))
ackermann_in_gaa(0) → ackermann_out_gaa
ackermann_in_gga(s(M), 0) → U1_gga(ackermann_in_gga(M, s(0)))
U3_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
U1_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0)
U2_gga(x0, x1)
U3_gga(x0)
U1_gga(x0)
We have to consider all (P,Q,R)-chains.
(61) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
ACKERMANN_IN_GAA(s(M)) → U2_GAA(M, ackermann_in_gaa(s(M)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACKERMANN_IN_GAA(x1)) = x1
POL(U1_gaa(x1)) = 0
POL(U1_gga(x1)) = 0
POL(U2_GAA(x1, x2)) = x1
POL(U2_gaa(x1, x2)) = 0
POL(U2_gga(x1, x2)) = 0
POL(U3_gaa(x1)) = 0
POL(U3_gga(x1)) = 0
POL(ackermann_in_gaa(x1)) = 0
POL(ackermann_in_gga(x1, x2)) = 0
POL(ackermann_out_gaa) = 0
POL(ackermann_out_gga(x1)) = 0
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GAA(M, ackermann_out_gaa) → ACKERMANN_IN_GAA(M)
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
The TRS R consists of the following rules:
ackermann_in_gaa(s(M)) → U1_gaa(ackermann_in_gga(M, s(0)))
ackermann_in_gaa(s(M)) → U2_gaa(M, ackermann_in_gaa(s(M)))
U1_gaa(ackermann_out_gga(Val)) → ackermann_out_gaa
U2_gaa(M, ackermann_out_gaa) → U3_gaa(ackermann_in_gaa(M))
ackermann_in_gga(0, N) → ackermann_out_gga(s(N))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, ackermann_in_gga(s(M), N))
U3_gaa(ackermann_out_gaa) → ackermann_out_gaa
U2_gga(M, ackermann_out_gga(Val1)) → U3_gga(ackermann_in_gga(M, Val1))
ackermann_in_gaa(0) → ackermann_out_gaa
ackermann_in_gga(s(M), 0) → U1_gga(ackermann_in_gga(M, s(0)))
U3_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
U1_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0)
U2_gga(x0, x1)
U3_gga(x0)
U1_gga(x0)
We have to consider all (P,Q,R)-chains.
(63) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
The TRS R consists of the following rules:
ackermann_in_gaa(s(M)) → U1_gaa(ackermann_in_gga(M, s(0)))
ackermann_in_gaa(s(M)) → U2_gaa(M, ackermann_in_gaa(s(M)))
U1_gaa(ackermann_out_gga(Val)) → ackermann_out_gaa
U2_gaa(M, ackermann_out_gaa) → U3_gaa(ackermann_in_gaa(M))
ackermann_in_gga(0, N) → ackermann_out_gga(s(N))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, ackermann_in_gga(s(M), N))
U3_gaa(ackermann_out_gaa) → ackermann_out_gaa
U2_gga(M, ackermann_out_gga(Val1)) → U3_gga(ackermann_in_gga(M, Val1))
ackermann_in_gaa(0) → ackermann_out_gaa
ackermann_in_gga(s(M), 0) → U1_gga(ackermann_in_gga(M, s(0)))
U3_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
U1_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0)
U2_gga(x0, x1)
U3_gga(x0)
U1_gga(x0)
We have to consider all (P,Q,R)-chains.
(65) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
R is empty.
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0)
U2_gga(x0, x1)
U3_gga(x0)
U1_gga(x0)
We have to consider all (P,Q,R)-chains.
(67) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0)
U2_gga(x0, x1)
U3_gga(x0)
U1_gga(x0)
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAA(s(M)) → ACKERMANN_IN_GAA(s(M))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(69) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
ACKERMANN_IN_GAA(
s(
M)) evaluates to t =
ACKERMANN_IN_GAA(
s(
M))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from ACKERMANN_IN_GAA(s(M)) to ACKERMANN_IN_GAA(s(M)).
(70) FALSE
(71) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag
U1_gag(
x1,
x2,
x3) =
U1_gag(
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
ACKERMANN_IN_GGG(
x1,
x2,
x3) =
ACKERMANN_IN_GGG(
x1,
x2,
x3)
U2_GGG(
x1,
x2,
x3,
x4) =
U2_GGG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(72) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(73) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_GGG(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
ACKERMANN_IN_GGG(
x1,
x2,
x3) =
ACKERMANN_IN_GGG(
x1,
x2,
x3)
U2_GGG(
x1,
x2,
x3,
x4) =
U2_GGG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(74) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(75) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, Val, ackermann_in_gga(s(M), N))
U2_GGG(M, Val, ackermann_out_gga(Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gga(s(M), 0) → U1_gga(ackermann_in_gga(M, s(0)))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, ackermann_in_gga(s(M), N))
U1_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
U2_gga(M, ackermann_out_gga(Val1)) → U3_gga(ackermann_in_gga(M, Val1))
ackermann_in_gga(0, N) → ackermann_out_gga(s(N))
U3_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
The set Q consists of the following terms:
ackermann_in_gga(x0, x1)
U1_gga(x0)
U2_gga(x0, x1)
U3_gga(x0)
We have to consider all (P,Q,R)-chains.
(76) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ACKERMANN_IN_GGG(s(M), s(N), Val) → U2_GGG(M, Val, ackermann_in_gga(s(M), N))
The graph contains the following edges 1 > 1, 3 >= 2
- U2_GGG(M, Val, ackermann_out_gga(Val1)) → ACKERMANN_IN_GGG(M, Val1, Val)
The graph contains the following edges 1 >= 1, 3 > 2, 2 >= 3
- ACKERMANN_IN_GGG(s(M), 0, Val) → ACKERMANN_IN_GGG(M, s(0), Val)
The graph contains the following edges 1 > 1, 3 >= 3
(77) TRUE
(78) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gag(0, N, s(N)) → ackermann_out_gag(0, N, s(N))
ackermann_in_gag(s(M), 0, Val) → U1_gag(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(0, N, s(N)) → ackermann_out_ggg(0, N, s(N))
ackermann_in_ggg(s(M), 0, Val) → U1_ggg(M, Val, ackermann_in_ggg(M, s(0), Val))
ackermann_in_ggg(s(M), s(N), Val) → U2_ggg(M, N, Val, ackermann_in_gga(s(M), N, Val1))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
U2_ggg(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_ggg(M, N, Val, ackermann_in_ggg(M, Val1, Val))
U3_ggg(M, N, Val, ackermann_out_ggg(M, Val1, Val)) → ackermann_out_ggg(s(M), s(N), Val)
U1_ggg(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_ggg(s(M), 0, Val)
U1_gag(M, Val, ackermann_out_ggg(M, s(0), Val)) → ackermann_out_gag(s(M), 0, Val)
ackermann_in_gag(s(M), s(N), Val) → U2_gag(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gag(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gag(M, N, Val, ackermann_in_gag(M, Val1, Val))
U3_gag(M, N, Val, ackermann_out_gag(M, Val1, Val)) → ackermann_out_gag(s(M), s(N), Val)
The argument filtering Pi contains the following mapping:
ackermann_in_gag(
x1,
x2,
x3) =
ackermann_in_gag(
x1,
x3)
0 =
0
s(
x1) =
s(
x1)
ackermann_out_gag(
x1,
x2,
x3) =
ackermann_out_gag
U1_gag(
x1,
x2,
x3) =
U1_gag(
x3)
ackermann_in_ggg(
x1,
x2,
x3) =
ackermann_in_ggg(
x1,
x2,
x3)
ackermann_out_ggg(
x1,
x2,
x3) =
ackermann_out_ggg
U1_ggg(
x1,
x2,
x3) =
U1_ggg(
x3)
U2_ggg(
x1,
x2,
x3,
x4) =
U2_ggg(
x1,
x3,
x4)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
U3_ggg(
x1,
x2,
x3,
x4) =
U3_ggg(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
U3_gag(
x1,
x2,
x3,
x4) =
U3_gag(
x4)
ACKERMANN_IN_GAG(
x1,
x2,
x3) =
ACKERMANN_IN_GAG(
x1,
x3)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(79) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(80) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), s(N), Val) → U2_GAG(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U2_GAG(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → ACKERMANN_IN_GAG(M, Val1, Val)
The TRS R consists of the following rules:
ackermann_in_gaa(s(M), 0, Val) → U1_gaa(M, Val, ackermann_in_gga(M, s(0), Val))
ackermann_in_gaa(s(M), s(N), Val) → U2_gaa(M, N, Val, ackermann_in_gaa(s(M), N, Val1))
U1_gaa(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gaa(s(M), 0, Val)
U2_gaa(M, N, Val, ackermann_out_gaa(s(M), N, Val1)) → U3_gaa(M, N, Val, ackermann_in_gaa(M, Val1, Val))
ackermann_in_gga(0, N, s(N)) → ackermann_out_gga(0, N, s(N))
ackermann_in_gga(s(M), s(N), Val) → U2_gga(M, N, Val, ackermann_in_gga(s(M), N, Val1))
U3_gaa(M, N, Val, ackermann_out_gaa(M, Val1, Val)) → ackermann_out_gaa(s(M), s(N), Val)
U2_gga(M, N, Val, ackermann_out_gga(s(M), N, Val1)) → U3_gga(M, N, Val, ackermann_in_gga(M, Val1, Val))
ackermann_in_gaa(0, N, s(N)) → ackermann_out_gaa(0, N, s(N))
ackermann_in_gga(s(M), 0, Val) → U1_gga(M, Val, ackermann_in_gga(M, s(0), Val))
U3_gga(M, N, Val, ackermann_out_gga(M, Val1, Val)) → ackermann_out_gga(s(M), s(N), Val)
U1_gga(M, Val, ackermann_out_gga(M, s(0), Val)) → ackermann_out_gga(s(M), 0, Val)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
ackermann_in_gga(
x1,
x2,
x3) =
ackermann_in_gga(
x1,
x2)
ackermann_out_gga(
x1,
x2,
x3) =
ackermann_out_gga(
x3)
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x4)
ackermann_in_gaa(
x1,
x2,
x3) =
ackermann_in_gaa(
x1)
ackermann_out_gaa(
x1,
x2,
x3) =
ackermann_out_gaa
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
ACKERMANN_IN_GAG(
x1,
x2,
x3) =
ACKERMANN_IN_GAG(
x1,
x3)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(81) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACKERMANN_IN_GAG(s(M), Val) → U2_GAG(M, Val, ackermann_in_gaa(s(M)))
U2_GAG(M, Val, ackermann_out_gaa) → ACKERMANN_IN_GAG(M, Val)
The TRS R consists of the following rules:
ackermann_in_gaa(s(M)) → U1_gaa(ackermann_in_gga(M, s(0)))
ackermann_in_gaa(s(M)) → U2_gaa(M, ackermann_in_gaa(s(M)))
U1_gaa(ackermann_out_gga(Val)) → ackermann_out_gaa
U2_gaa(M, ackermann_out_gaa) → U3_gaa(ackermann_in_gaa(M))
ackermann_in_gga(0, N) → ackermann_out_gga(s(N))
ackermann_in_gga(s(M), s(N)) → U2_gga(M, ackermann_in_gga(s(M), N))
U3_gaa(ackermann_out_gaa) → ackermann_out_gaa
U2_gga(M, ackermann_out_gga(Val1)) → U3_gga(ackermann_in_gga(M, Val1))
ackermann_in_gaa(0) → ackermann_out_gaa
ackermann_in_gga(s(M), 0) → U1_gga(ackermann_in_gga(M, s(0)))
U3_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
U1_gga(ackermann_out_gga(Val)) → ackermann_out_gga(Val)
The set Q consists of the following terms:
ackermann_in_gaa(x0)
U1_gaa(x0)
U2_gaa(x0, x1)
ackermann_in_gga(x0, x1)
U3_gaa(x0)
U2_gga(x0, x1)
U3_gga(x0)
U1_gga(x0)
We have to consider all (P,Q,R)-chains.
(83) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U2_GAG(M, Val, ackermann_out_gaa) → ACKERMANN_IN_GAG(M, Val)
The graph contains the following edges 1 >= 1, 2 >= 2
- ACKERMANN_IN_GAG(s(M), Val) → U2_GAG(M, Val, ackermann_in_gaa(s(M)))
The graph contains the following edges 1 > 1, 2 >= 2
(84) TRUE