(0) Obligation:
Clauses:
transpose(A, B) :- transpose_aux(A, nil, B).
transpose_aux(cons(R, Rs), X1, cons(C, Cs)) :- ','(row2col(R, cons(C, Cs), Cols1, Accm), transpose_aux(Rs, Accm, Cols1)).
transpose_aux(nil, X, X).
row2col(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) :- row2col(Xs, Cols, Cols1, As).
row2col(nil, nil, nil, nil).
Queries:
transpose(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
transpose_in: (f,b)
transpose_aux_in: (f,b,b)
row2col_in: (f,b,f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x3,
x4,
x5,
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x4,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x2,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x3,
x4,
x5,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1,
x2,
x3)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x3,
x4,
x5,
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x4,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x2,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x3,
x4,
x5,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1,
x2,
x3)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1,
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
TRANSPOSE_IN_AG(A, B) → U1_AG(A, B, transpose_aux_in_agg(A, nil, B))
TRANSPOSE_IN_AG(A, B) → TRANSPOSE_AUX_IN_AGG(A, nil, B)
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → U2_AGG(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → ROW2COL_IN_AGAA(R, cons(C, Cs), Cols1, Accm)
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_AGAA(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → ROW2COL_IN_AGAA(Xs, Cols, Cols1, As)
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_AGG(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Rs, Accm, Cols1)
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x3,
x4,
x5,
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x4,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x2,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x3,
x4,
x5,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1,
x2,
x3)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1,
x2)
TRANSPOSE_IN_AG(
x1,
x2) =
TRANSPOSE_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
TRANSPOSE_AUX_IN_AGG(
x1,
x2,
x3) =
TRANSPOSE_AUX_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_AGG(
x3,
x4,
x5,
x6)
ROW2COL_IN_AGAA(
x1,
x2,
x3,
x4) =
ROW2COL_IN_AGAA(
x2)
U4_AGAA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_AGAA(
x1,
x3,
x4,
x7)
U3_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_AGG(
x1,
x3,
x4,
x5,
x6)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
TRANSPOSE_IN_AG(A, B) → U1_AG(A, B, transpose_aux_in_agg(A, nil, B))
TRANSPOSE_IN_AG(A, B) → TRANSPOSE_AUX_IN_AGG(A, nil, B)
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → U2_AGG(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → ROW2COL_IN_AGAA(R, cons(C, Cs), Cols1, Accm)
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_AGAA(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → ROW2COL_IN_AGAA(Xs, Cols, Cols1, As)
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_AGG(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Rs, Accm, Cols1)
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x3,
x4,
x5,
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x4,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x2,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x3,
x4,
x5,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1,
x2,
x3)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1,
x2)
TRANSPOSE_IN_AG(
x1,
x2) =
TRANSPOSE_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
TRANSPOSE_AUX_IN_AGG(
x1,
x2,
x3) =
TRANSPOSE_AUX_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_AGG(
x3,
x4,
x5,
x6)
ROW2COL_IN_AGAA(
x1,
x2,
x3,
x4) =
ROW2COL_IN_AGAA(
x2)
U4_AGAA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_AGAA(
x1,
x3,
x4,
x7)
U3_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_AGG(
x1,
x3,
x4,
x5,
x6)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → ROW2COL_IN_AGAA(Xs, Cols, Cols1, As)
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x3,
x4,
x5,
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x4,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x2,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x3,
x4,
x5,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1,
x2,
x3)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1,
x2)
ROW2COL_IN_AGAA(
x1,
x2,
x3,
x4) =
ROW2COL_IN_AGAA(
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → ROW2COL_IN_AGAA(Xs, Cols, Cols1, As)
R is empty.
The argument filtering Pi contains the following mapping:
cons(
x1,
x2) =
cons(
x1,
x2)
nil =
nil
ROW2COL_IN_AGAA(
x1,
x2,
x3,
x4) =
ROW2COL_IN_AGAA(
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ROW2COL_IN_AGAA(cons(cons(X, Ys), Cols)) → ROW2COL_IN_AGAA(Cols)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ROW2COL_IN_AGAA(cons(cons(X, Ys), Cols)) → ROW2COL_IN_AGAA(Cols)
The graph contains the following edges 1 > 1
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Rs, Accm, Cols1)
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → U2_AGG(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x3,
x4,
x5,
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x4,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x2,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x3,
x4,
x5,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1,
x2,
x3)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1,
x2)
TRANSPOSE_AUX_IN_AGG(
x1,
x2,
x3) =
TRANSPOSE_AUX_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_AGG(
x3,
x4,
x5,
x6)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Rs, Accm, Cols1)
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → U2_AGG(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
The TRS R consists of the following rules:
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
The argument filtering Pi contains the following mapping:
cons(
x1,
x2) =
cons(
x1,
x2)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x4,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x2,
x3,
x4)
TRANSPOSE_AUX_IN_AGG(
x1,
x2,
x3) =
TRANSPOSE_AUX_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_AGG(
x3,
x4,
x5,
x6)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGG(X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Accm, Cols1)
TRANSPOSE_AUX_IN_AGG(X1, cons(C, Cs)) → U2_AGG(X1, C, Cs, row2col_in_agaa(cons(C, Cs)))
The TRS R consists of the following rules:
row2col_in_agaa(cons(cons(X, Ys), Cols)) → U4_agaa(X, Ys, Cols, row2col_in_agaa(Cols))
U4_agaa(X, Ys, Cols, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
row2col_in_agaa(nil) → row2col_out_agaa(nil, nil, nil, nil)
The set Q consists of the following terms:
row2col_in_agaa(x0)
U4_agaa(x0, x1, x2, x3)
We have to consider all (P,Q,R)-chains.
(19) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
transpose_in: (f,b)
transpose_aux_in: (f,b,b)
row2col_in: (f,b,f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(20) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1)
(21) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
TRANSPOSE_IN_AG(A, B) → U1_AG(A, B, transpose_aux_in_agg(A, nil, B))
TRANSPOSE_IN_AG(A, B) → TRANSPOSE_AUX_IN_AGG(A, nil, B)
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → U2_AGG(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → ROW2COL_IN_AGAA(R, cons(C, Cs), Cols1, Accm)
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_AGAA(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → ROW2COL_IN_AGAA(Xs, Cols, Cols1, As)
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_AGG(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Rs, Accm, Cols1)
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1)
TRANSPOSE_IN_AG(
x1,
x2) =
TRANSPOSE_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
TRANSPOSE_AUX_IN_AGG(
x1,
x2,
x3) =
TRANSPOSE_AUX_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_AGG(
x6)
ROW2COL_IN_AGAA(
x1,
x2,
x3,
x4) =
ROW2COL_IN_AGAA(
x2)
U4_AGAA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_AGAA(
x1,
x3,
x7)
U3_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_AGG(
x1,
x6)
We have to consider all (P,R,Pi)-chains
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
TRANSPOSE_IN_AG(A, B) → U1_AG(A, B, transpose_aux_in_agg(A, nil, B))
TRANSPOSE_IN_AG(A, B) → TRANSPOSE_AUX_IN_AGG(A, nil, B)
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → U2_AGG(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → ROW2COL_IN_AGAA(R, cons(C, Cs), Cols1, Accm)
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_AGAA(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → ROW2COL_IN_AGAA(Xs, Cols, Cols1, As)
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_AGG(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Rs, Accm, Cols1)
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1)
TRANSPOSE_IN_AG(
x1,
x2) =
TRANSPOSE_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
TRANSPOSE_AUX_IN_AGG(
x1,
x2,
x3) =
TRANSPOSE_AUX_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_AGG(
x6)
ROW2COL_IN_AGAA(
x1,
x2,
x3,
x4) =
ROW2COL_IN_AGAA(
x2)
U4_AGAA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_AGAA(
x1,
x3,
x7)
U3_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_AGG(
x1,
x6)
We have to consider all (P,R,Pi)-chains
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 5 less nodes.
(24) Complex Obligation (AND)
(25) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → ROW2COL_IN_AGAA(Xs, Cols, Cols1, As)
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1)
ROW2COL_IN_AGAA(
x1,
x2,
x3,
x4) =
ROW2COL_IN_AGAA(
x2)
We have to consider all (P,R,Pi)-chains
(26) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(27) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ROW2COL_IN_AGAA(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → ROW2COL_IN_AGAA(Xs, Cols, Cols1, As)
R is empty.
The argument filtering Pi contains the following mapping:
cons(
x1,
x2) =
cons(
x1,
x2)
nil =
nil
ROW2COL_IN_AGAA(
x1,
x2,
x3,
x4) =
ROW2COL_IN_AGAA(
x2)
We have to consider all (P,R,Pi)-chains
(28) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ROW2COL_IN_AGAA(cons(cons(X, Ys), Cols)) → ROW2COL_IN_AGAA(Cols)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(30) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ROW2COL_IN_AGAA(cons(cons(X, Ys), Cols)) → ROW2COL_IN_AGAA(Cols)
The graph contains the following edges 1 > 1
(31) TRUE
(32) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Rs, Accm, Cols1)
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → U2_AGG(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
The TRS R consists of the following rules:
transpose_in_ag(A, B) → U1_ag(A, B, transpose_aux_in_agg(A, nil, B))
transpose_aux_in_agg(cons(R, Rs), X1, cons(C, Cs)) → U2_agg(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
U2_agg(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → U3_agg(R, Rs, X1, C, Cs, transpose_aux_in_agg(Rs, Accm, Cols1))
transpose_aux_in_agg(nil, X, X) → transpose_aux_out_agg(nil, X, X)
U3_agg(R, Rs, X1, C, Cs, transpose_aux_out_agg(Rs, Accm, Cols1)) → transpose_aux_out_agg(cons(R, Rs), X1, cons(C, Cs))
U1_ag(A, B, transpose_aux_out_agg(A, nil, B)) → transpose_out_ag(A, B)
The argument filtering Pi contains the following mapping:
transpose_in_ag(
x1,
x2) =
transpose_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
transpose_aux_in_agg(
x1,
x2,
x3) =
transpose_aux_in_agg(
x2,
x3)
cons(
x1,
x2) =
cons(
x1,
x2)
U2_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_agg(
x6)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x3,
x4)
U3_agg(
x1,
x2,
x3,
x4,
x5,
x6) =
U3_agg(
x1,
x6)
transpose_aux_out_agg(
x1,
x2,
x3) =
transpose_aux_out_agg(
x1)
transpose_out_ag(
x1,
x2) =
transpose_out_ag(
x1)
TRANSPOSE_AUX_IN_AGG(
x1,
x2,
x3) =
TRANSPOSE_AUX_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_AGG(
x6)
We have to consider all (P,R,Pi)-chains
(33) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_AGG(R, Rs, X1, C, Cs, row2col_out_agaa(R, cons(C, Cs), Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Rs, Accm, Cols1)
TRANSPOSE_AUX_IN_AGG(cons(R, Rs), X1, cons(C, Cs)) → U2_AGG(R, Rs, X1, C, Cs, row2col_in_agaa(R, cons(C, Cs), Cols1, Accm))
The TRS R consists of the following rules:
row2col_in_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As)) → U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_in_agaa(Xs, Cols, Cols1, As))
U4_agaa(X, Xs, Ys, Cols, Cols1, As, row2col_out_agaa(Xs, Cols, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(cons(X, Ys), Cols), cons(Ys, Cols1), cons(nil, As))
row2col_in_agaa(nil, nil, nil, nil) → row2col_out_agaa(nil, nil, nil, nil)
The argument filtering Pi contains the following mapping:
cons(
x1,
x2) =
cons(
x1,
x2)
row2col_in_agaa(
x1,
x2,
x3,
x4) =
row2col_in_agaa(
x2)
U4_agaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U4_agaa(
x1,
x3,
x7)
nil =
nil
row2col_out_agaa(
x1,
x2,
x3,
x4) =
row2col_out_agaa(
x1,
x3,
x4)
TRANSPOSE_AUX_IN_AGG(
x1,
x2,
x3) =
TRANSPOSE_AUX_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_AGG(
x6)
We have to consider all (P,R,Pi)-chains
(35) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGG(row2col_out_agaa(R, Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Accm, Cols1)
TRANSPOSE_AUX_IN_AGG(X1, cons(C, Cs)) → U2_AGG(row2col_in_agaa(cons(C, Cs)))
The TRS R consists of the following rules:
row2col_in_agaa(cons(cons(X, Ys), Cols)) → U4_agaa(X, Ys, row2col_in_agaa(Cols))
U4_agaa(X, Ys, row2col_out_agaa(Xs, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(Ys, Cols1), cons(nil, As))
row2col_in_agaa(nil) → row2col_out_agaa(nil, nil, nil)
The set Q consists of the following terms:
row2col_in_agaa(x0)
U4_agaa(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(37) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U2_AGG(row2col_out_agaa(R, Cols1, Accm)) → TRANSPOSE_AUX_IN_AGG(Accm, Cols1)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(U2_AGG(x1)) = | 1 | + | | · | x1 |
POL(row2col_out_agaa(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
POL(TRANSPOSE_AUX_IN_AGG(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(row2col_in_agaa(x1)) = | | + | | · | x1 |
POL(U4_agaa(x1, x2, x3)) = | | + | | · | x1 | + | | · | x2 | + | | · | x3 |
The following usable rules [FROCOS05] were oriented:
row2col_in_agaa(cons(cons(X, Ys), Cols)) → U4_agaa(X, Ys, row2col_in_agaa(Cols))
row2col_in_agaa(nil) → row2col_out_agaa(nil, nil, nil)
U4_agaa(X, Ys, row2col_out_agaa(Xs, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(Ys, Cols1), cons(nil, As))
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TRANSPOSE_AUX_IN_AGG(X1, cons(C, Cs)) → U2_AGG(row2col_in_agaa(cons(C, Cs)))
The TRS R consists of the following rules:
row2col_in_agaa(cons(cons(X, Ys), Cols)) → U4_agaa(X, Ys, row2col_in_agaa(Cols))
U4_agaa(X, Ys, row2col_out_agaa(Xs, Cols1, As)) → row2col_out_agaa(cons(X, Xs), cons(Ys, Cols1), cons(nil, As))
row2col_in_agaa(nil) → row2col_out_agaa(nil, nil, nil)
The set Q consists of the following terms:
row2col_in_agaa(x0)
U4_agaa(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(39) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(40) TRUE