(0) Obligation:

Clauses:

times(X, Y, Z) :- mult(X, Y, 0, Z).
mult(0, Y, 0, 0).
mult(s(U), Y, 0, Z) :- mult(U, Y, Y, Z).
mult(X, Y, s(W), s(Z)) :- mult(X, Y, W, Z).

Queries:

times(g,g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
times_in: (b,b,f)
mult_in: (b,b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → U2_GGGA(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)
MULT_IN_GGGA(X, Y, s(W), s(Z)) → U3_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U2_GGGA(x1, x2, x3, x4)  =  U2_GGGA(x4)
U3_GGGA(x1, x2, x3, x4, x5)  =  U3_GGGA(x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → U2_GGGA(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)
MULT_IN_GGGA(X, Y, s(W), s(Z)) → U3_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U2_GGGA(x1, x2, x3, x4)  =  U2_GGGA(x4)
U3_GGGA(x1, x2, x3, x4, x5)  =  U3_GGGA(x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, s(W)) → MULT_IN_GGGA(X, Y, W)
MULT_IN_GGGA(s(U), Y, 0) → MULT_IN_GGGA(U, Y, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MULT_IN_GGGA(X, Y, s(W)) → MULT_IN_GGGA(X, Y, W)
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3

  • MULT_IN_GGGA(s(U), Y, 0) → MULT_IN_GGGA(U, Y, Y)
    The graph contains the following edges 1 > 1, 2 >= 2, 2 >= 3

(12) TRUE

(13) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
times_in: (b,b,f)
mult_in: (b,b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x1, x2, x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(14) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x1, x2, x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)

(15) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → U2_GGGA(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)
MULT_IN_GGGA(X, Y, s(W), s(Z)) → U3_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x1, x2, x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U2_GGGA(x1, x2, x3, x4)  =  U2_GGGA(x1, x2, x4)
U3_GGGA(x1, x2, x3, x4, x5)  =  U3_GGGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → U2_GGGA(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)
MULT_IN_GGGA(X, Y, s(W), s(Z)) → U3_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x1, x2, x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U2_GGGA(x1, x2, x3, x4)  =  U2_GGGA(x1, x2, x4)
U3_GGGA(x1, x2, x3, x4, x5)  =  U3_GGGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, 0) → mult_out_ggga(0, Y, 0, 0)
mult_in_ggga(s(U), Y, 0, Z) → U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z))
mult_in_ggga(X, Y, s(W), s(Z)) → U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z))
U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) → mult_out_ggga(X, Y, s(W), s(Z))
U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) → mult_out_ggga(s(U), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U2_ggga(x1, x2, x3, x4)  =  U2_ggga(x1, x2, x4)
U3_ggga(x1, x2, x3, x4, x5)  =  U3_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(19) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, s(W), s(Z)) → MULT_IN_GGGA(X, Y, W, Z)
MULT_IN_GGGA(s(U), Y, 0, Z) → MULT_IN_GGGA(U, Y, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(21) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, s(W)) → MULT_IN_GGGA(X, Y, W)
MULT_IN_GGGA(s(U), Y, 0) → MULT_IN_GGGA(U, Y, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.