(0) Obligation:
Clauses:
p(s(0), 0).
p(s(s(X)), s(s(Y))) :- p(s(X), s(Y)).
plus(0, Y, Y).
plus(s(X), Y, s(Z)) :- ','(p(s(X), U), plus(U, Y, Z)).
Queries:
plus(g,a,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
plus_in: (b,f,f)
p_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa(
x1)
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa(
x1)
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAA(s(X), Y, s(Z)) → U2_GAA(X, Y, Z, p_in_ga(s(X), U))
PLUS_IN_GAA(s(X), Y, s(Z)) → P_IN_GA(s(X), U)
P_IN_GA(s(s(X)), s(s(Y))) → U1_GA(X, Y, p_in_ga(s(X), s(Y)))
P_IN_GA(s(s(X)), s(s(Y))) → P_IN_GA(s(X), s(Y))
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → U3_GAA(X, Y, Z, plus_in_gaa(U, Y, Z))
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → PLUS_IN_GAA(U, Y, Z)
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa(
x1)
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
PLUS_IN_GAA(
x1,
x2,
x3) =
PLUS_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U3_GAA(
x1,
x2,
x3,
x4) =
U3_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAA(s(X), Y, s(Z)) → U2_GAA(X, Y, Z, p_in_ga(s(X), U))
PLUS_IN_GAA(s(X), Y, s(Z)) → P_IN_GA(s(X), U)
P_IN_GA(s(s(X)), s(s(Y))) → U1_GA(X, Y, p_in_ga(s(X), s(Y)))
P_IN_GA(s(s(X)), s(s(Y))) → P_IN_GA(s(X), s(Y))
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → U3_GAA(X, Y, Z, plus_in_gaa(U, Y, Z))
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → PLUS_IN_GAA(U, Y, Z)
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa(
x1)
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
PLUS_IN_GAA(
x1,
x2,
x3) =
PLUS_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U3_GAA(
x1,
x2,
x3,
x4) =
U3_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(s(s(X)), s(s(Y))) → P_IN_GA(s(X), s(Y))
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa(
x1)
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(s(s(X)), s(s(Y))) → P_IN_GA(s(X), s(Y))
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(s(s(X))) → P_IN_GA(s(X))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P_IN_GA(s(s(X))) → P_IN_GA(s(X))
The graph contains the following edges 1 > 1
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → PLUS_IN_GAA(U, Y, Z)
PLUS_IN_GAA(s(X), Y, s(Z)) → U2_GAA(X, Y, Z, p_in_ga(s(X), U))
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa(
x1)
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x1,
x4)
PLUS_IN_GAA(
x1,
x2,
x3) =
PLUS_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → PLUS_IN_GAA(U, Y, Z)
PLUS_IN_GAA(s(X), Y, s(Z)) → U2_GAA(X, Y, Z, p_in_ga(s(X), U))
The TRS R consists of the following rules:
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
PLUS_IN_GAA(
x1,
x2,
x3) =
PLUS_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GAA(X, p_out_ga(s(X), U)) → PLUS_IN_GAA(U)
PLUS_IN_GAA(s(X)) → U2_GAA(X, p_in_ga(s(X)))
The TRS R consists of the following rules:
p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U1_ga(X, p_in_ga(s(X)))
U1_ga(X, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0, x1)
We have to consider all (P,Q,R)-chains.
(19) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
plus_in: (b,f,f)
p_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(20) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
(21) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAA(s(X), Y, s(Z)) → U2_GAA(X, Y, Z, p_in_ga(s(X), U))
PLUS_IN_GAA(s(X), Y, s(Z)) → P_IN_GA(s(X), U)
P_IN_GA(s(s(X)), s(s(Y))) → U1_GA(X, Y, p_in_ga(s(X), s(Y)))
P_IN_GA(s(s(X)), s(s(Y))) → P_IN_GA(s(X), s(Y))
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → U3_GAA(X, Y, Z, plus_in_gaa(U, Y, Z))
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → PLUS_IN_GAA(U, Y, Z)
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
PLUS_IN_GAA(
x1,
x2,
x3) =
PLUS_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
U3_GAA(
x1,
x2,
x3,
x4) =
U3_GAA(
x4)
We have to consider all (P,R,Pi)-chains
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PLUS_IN_GAA(s(X), Y, s(Z)) → U2_GAA(X, Y, Z, p_in_ga(s(X), U))
PLUS_IN_GAA(s(X), Y, s(Z)) → P_IN_GA(s(X), U)
P_IN_GA(s(s(X)), s(s(Y))) → U1_GA(X, Y, p_in_ga(s(X), s(Y)))
P_IN_GA(s(s(X)), s(s(Y))) → P_IN_GA(s(X), s(Y))
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → U3_GAA(X, Y, Z, plus_in_gaa(U, Y, Z))
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → PLUS_IN_GAA(U, Y, Z)
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
PLUS_IN_GAA(
x1,
x2,
x3) =
PLUS_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
U3_GAA(
x1,
x2,
x3,
x4) =
U3_GAA(
x4)
We have to consider all (P,R,Pi)-chains
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.
(24) Complex Obligation (AND)
(25) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(s(s(X)), s(s(Y))) → P_IN_GA(s(X), s(Y))
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(26) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(27) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(s(s(X)), s(s(Y))) → P_IN_GA(s(X), s(Y))
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(28) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_GA(s(s(X))) → P_IN_GA(s(X))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(30) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P_IN_GA(s(s(X))) → P_IN_GA(s(X))
The graph contains the following edges 1 > 1
(31) TRUE
(32) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → PLUS_IN_GAA(U, Y, Z)
PLUS_IN_GAA(s(X), Y, s(Z)) → U2_GAA(X, Y, Z, p_in_ga(s(X), U))
The TRS R consists of the following rules:
plus_in_gaa(0, Y, Y) → plus_out_gaa(0, Y, Y)
plus_in_gaa(s(X), Y, s(Z)) → U2_gaa(X, Y, Z, p_in_ga(s(X), U))
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
U2_gaa(X, Y, Z, p_out_ga(s(X), U)) → U3_gaa(X, Y, Z, plus_in_gaa(U, Y, Z))
U3_gaa(X, Y, Z, plus_out_gaa(U, Y, Z)) → plus_out_gaa(s(X), Y, s(Z))
The argument filtering Pi contains the following mapping:
plus_in_gaa(
x1,
x2,
x3) =
plus_in_gaa(
x1)
0 =
0
plus_out_gaa(
x1,
x2,
x3) =
plus_out_gaa
s(
x1) =
s(
x1)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_gaa(
x1,
x2,
x3,
x4) =
U3_gaa(
x4)
PLUS_IN_GAA(
x1,
x2,
x3) =
PLUS_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x4)
We have to consider all (P,R,Pi)-chains
(33) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_GAA(X, Y, Z, p_out_ga(s(X), U)) → PLUS_IN_GAA(U, Y, Z)
PLUS_IN_GAA(s(X), Y, s(Z)) → U2_GAA(X, Y, Z, p_in_ga(s(X), U))
The TRS R consists of the following rules:
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(s(Y))) → U1_ga(X, Y, p_in_ga(s(X), s(Y)))
U1_ga(X, Y, p_out_ga(s(X), s(Y))) → p_out_ga(s(s(X)), s(s(Y)))
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
PLUS_IN_GAA(
x1,
x2,
x3) =
PLUS_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x4)
We have to consider all (P,R,Pi)-chains
(35) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GAA(p_out_ga(U)) → PLUS_IN_GAA(U)
PLUS_IN_GAA(s(X)) → U2_GAA(p_in_ga(s(X)))
The TRS R consists of the following rules:
p_in_ga(s(0)) → p_out_ga(0)
p_in_ga(s(s(X))) → U1_ga(p_in_ga(s(X)))
U1_ga(p_out_ga(s(Y))) → p_out_ga(s(s(Y)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0)
We have to consider all (P,Q,R)-chains.
(37) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
U2_GAA(p_out_ga(U)) → PLUS_IN_GAA(U)
PLUS_IN_GAA(s(X)) → U2_GAA(p_in_ga(s(X)))
Strictly oriented rules of the TRS R:
p_in_ga(s(0)) → p_out_ga(0)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(PLUS_IN_GAA(x1)) = 1 + x1
POL(U1_ga(x1)) = 3 + x1
POL(U2_GAA(x1)) = x1
POL(p_in_ga(x1)) = x1
POL(p_out_ga(x1)) = 2 + x1
POL(s(x1)) = 3 + x1
(38) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
p_in_ga(s(s(X))) → U1_ga(p_in_ga(s(X)))
U1_ga(p_out_ga(s(Y))) → p_out_ga(s(s(Y)))
The set Q consists of the following terms:
p_in_ga(x0)
U1_ga(x0)
We have to consider all (P,Q,R)-chains.
(39) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(40) TRUE