(0) Obligation:

Clauses:

perm1(L, M) :- ','(eq_len1(L, M), same_sets(L, M)).
eq_len1([], []).
eq_len1(.(X1, Xs), .(X2, Ys)) :- eq_len1(Xs, Ys).
member(X, .(X, X3)).
member(X, .(X4, T)) :- member(X, T).
same_sets([], X5).
same_sets(.(X, Xs), L) :- ','(member(X, L), same_sets(Xs, L)).

Queries:

perm1(g,g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

eq_len117([], []).
eq_len117(.(T27, T28), .(T29, T30)) :- eq_len117(T28, T30).
member38(T94, .(T94, T95)).
member38(T102, .(T103, T104)) :- member38(T102, T104).
p29(T47, T49, T50, T48) :- member30(T47, T49, T50).
p29(T47, T121, T122, []) :- member30(T47, T121, T122).
p29(T47, T133, T134, .(T131, T132)) :- ','(member30(T47, T133, T134), p29(T131, T133, T134, T132)).
member30(T67, T67, T68).
member30(T79, T80, T81) :- member38(T79, T81).
perm11([], []).
perm11(.(T15, T16), .(T17, T18)) :- eq_len117(T16, T18).
perm11(.(T47, T48), .(T49, T50)) :- ','(eq_len117(T48, T50), p29(T47, T49, T50, T48)).

Queries:

perm11(g,g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
perm11_in: (b,b)
eq_len117_in: (b,b)
p29_in: (b,b,b,b)
member30_in: (b,b,b)
member38_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

perm11_in_gg([], []) → perm11_out_gg([], [])
perm11_in_gg(.(T15, T16), .(T17, T18)) → U8_gg(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
eq_len117_in_gg([], []) → eq_len117_out_gg([], [])
eq_len117_in_gg(.(T27, T28), .(T29, T30)) → U1_gg(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
U1_gg(T27, T28, T29, T30, eq_len117_out_gg(T28, T30)) → eq_len117_out_gg(.(T27, T28), .(T29, T30))
U8_gg(T15, T16, T17, T18, eq_len117_out_gg(T16, T18)) → perm11_out_gg(.(T15, T16), .(T17, T18))
perm11_in_gg(.(T47, T48), .(T49, T50)) → U9_gg(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_gg(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_gg(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
p29_in_gggg(T47, T49, T50, T48) → U3_gggg(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
member30_in_ggg(T67, T67, T68) → member30_out_ggg(T67, T67, T68)
member30_in_ggg(T79, T80, T81) → U7_ggg(T79, T80, T81, member38_in_gg(T79, T81))
member38_in_gg(T94, .(T94, T95)) → member38_out_gg(T94, .(T94, T95))
member38_in_gg(T102, .(T103, T104)) → U2_gg(T102, T103, T104, member38_in_gg(T102, T104))
U2_gg(T102, T103, T104, member38_out_gg(T102, T104)) → member38_out_gg(T102, .(T103, T104))
U7_ggg(T79, T80, T81, member38_out_gg(T79, T81)) → member30_out_ggg(T79, T80, T81)
U3_gggg(T47, T49, T50, T48, member30_out_ggg(T47, T49, T50)) → p29_out_gggg(T47, T49, T50, T48)
p29_in_gggg(T47, T121, T122, []) → U4_gggg(T47, T121, T122, member30_in_ggg(T47, T121, T122))
U4_gggg(T47, T121, T122, member30_out_ggg(T47, T121, T122)) → p29_out_gggg(T47, T121, T122, [])
p29_in_gggg(T47, T133, T134, .(T131, T132)) → U5_gggg(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_gggg(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_gggg(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U6_gggg(T47, T133, T134, T131, T132, p29_out_gggg(T131, T133, T134, T132)) → p29_out_gggg(T47, T133, T134, .(T131, T132))
U10_gg(T47, T48, T49, T50, p29_out_gggg(T47, T49, T50, T48)) → perm11_out_gg(.(T47, T48), .(T49, T50))

The argument filtering Pi contains the following mapping:
perm11_in_gg(x1, x2)  =  perm11_in_gg(x1, x2)
[]  =  []
perm11_out_gg(x1, x2)  =  perm11_out_gg
.(x1, x2)  =  .(x1, x2)
U8_gg(x1, x2, x3, x4, x5)  =  U8_gg(x5)
eq_len117_in_gg(x1, x2)  =  eq_len117_in_gg(x1, x2)
eq_len117_out_gg(x1, x2)  =  eq_len117_out_gg
U1_gg(x1, x2, x3, x4, x5)  =  U1_gg(x5)
U9_gg(x1, x2, x3, x4, x5)  =  U9_gg(x1, x2, x3, x4, x5)
U10_gg(x1, x2, x3, x4, x5)  =  U10_gg(x5)
p29_in_gggg(x1, x2, x3, x4)  =  p29_in_gggg(x1, x2, x3, x4)
U3_gggg(x1, x2, x3, x4, x5)  =  U3_gggg(x5)
member30_in_ggg(x1, x2, x3)  =  member30_in_ggg(x1, x2, x3)
member30_out_ggg(x1, x2, x3)  =  member30_out_ggg
U7_ggg(x1, x2, x3, x4)  =  U7_ggg(x4)
member38_in_gg(x1, x2)  =  member38_in_gg(x1, x2)
member38_out_gg(x1, x2)  =  member38_out_gg
U2_gg(x1, x2, x3, x4)  =  U2_gg(x4)
p29_out_gggg(x1, x2, x3, x4)  =  p29_out_gggg
U4_gggg(x1, x2, x3, x4)  =  U4_gggg(x4)
U5_gggg(x1, x2, x3, x4, x5, x6)  =  U5_gggg(x2, x3, x4, x5, x6)
U6_gggg(x1, x2, x3, x4, x5, x6)  =  U6_gggg(x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

perm11_in_gg([], []) → perm11_out_gg([], [])
perm11_in_gg(.(T15, T16), .(T17, T18)) → U8_gg(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
eq_len117_in_gg([], []) → eq_len117_out_gg([], [])
eq_len117_in_gg(.(T27, T28), .(T29, T30)) → U1_gg(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
U1_gg(T27, T28, T29, T30, eq_len117_out_gg(T28, T30)) → eq_len117_out_gg(.(T27, T28), .(T29, T30))
U8_gg(T15, T16, T17, T18, eq_len117_out_gg(T16, T18)) → perm11_out_gg(.(T15, T16), .(T17, T18))
perm11_in_gg(.(T47, T48), .(T49, T50)) → U9_gg(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_gg(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_gg(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
p29_in_gggg(T47, T49, T50, T48) → U3_gggg(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
member30_in_ggg(T67, T67, T68) → member30_out_ggg(T67, T67, T68)
member30_in_ggg(T79, T80, T81) → U7_ggg(T79, T80, T81, member38_in_gg(T79, T81))
member38_in_gg(T94, .(T94, T95)) → member38_out_gg(T94, .(T94, T95))
member38_in_gg(T102, .(T103, T104)) → U2_gg(T102, T103, T104, member38_in_gg(T102, T104))
U2_gg(T102, T103, T104, member38_out_gg(T102, T104)) → member38_out_gg(T102, .(T103, T104))
U7_ggg(T79, T80, T81, member38_out_gg(T79, T81)) → member30_out_ggg(T79, T80, T81)
U3_gggg(T47, T49, T50, T48, member30_out_ggg(T47, T49, T50)) → p29_out_gggg(T47, T49, T50, T48)
p29_in_gggg(T47, T121, T122, []) → U4_gggg(T47, T121, T122, member30_in_ggg(T47, T121, T122))
U4_gggg(T47, T121, T122, member30_out_ggg(T47, T121, T122)) → p29_out_gggg(T47, T121, T122, [])
p29_in_gggg(T47, T133, T134, .(T131, T132)) → U5_gggg(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_gggg(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_gggg(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U6_gggg(T47, T133, T134, T131, T132, p29_out_gggg(T131, T133, T134, T132)) → p29_out_gggg(T47, T133, T134, .(T131, T132))
U10_gg(T47, T48, T49, T50, p29_out_gggg(T47, T49, T50, T48)) → perm11_out_gg(.(T47, T48), .(T49, T50))

The argument filtering Pi contains the following mapping:
perm11_in_gg(x1, x2)  =  perm11_in_gg(x1, x2)
[]  =  []
perm11_out_gg(x1, x2)  =  perm11_out_gg
.(x1, x2)  =  .(x1, x2)
U8_gg(x1, x2, x3, x4, x5)  =  U8_gg(x5)
eq_len117_in_gg(x1, x2)  =  eq_len117_in_gg(x1, x2)
eq_len117_out_gg(x1, x2)  =  eq_len117_out_gg
U1_gg(x1, x2, x3, x4, x5)  =  U1_gg(x5)
U9_gg(x1, x2, x3, x4, x5)  =  U9_gg(x1, x2, x3, x4, x5)
U10_gg(x1, x2, x3, x4, x5)  =  U10_gg(x5)
p29_in_gggg(x1, x2, x3, x4)  =  p29_in_gggg(x1, x2, x3, x4)
U3_gggg(x1, x2, x3, x4, x5)  =  U3_gggg(x5)
member30_in_ggg(x1, x2, x3)  =  member30_in_ggg(x1, x2, x3)
member30_out_ggg(x1, x2, x3)  =  member30_out_ggg
U7_ggg(x1, x2, x3, x4)  =  U7_ggg(x4)
member38_in_gg(x1, x2)  =  member38_in_gg(x1, x2)
member38_out_gg(x1, x2)  =  member38_out_gg
U2_gg(x1, x2, x3, x4)  =  U2_gg(x4)
p29_out_gggg(x1, x2, x3, x4)  =  p29_out_gggg
U4_gggg(x1, x2, x3, x4)  =  U4_gggg(x4)
U5_gggg(x1, x2, x3, x4, x5, x6)  =  U5_gggg(x2, x3, x4, x5, x6)
U6_gggg(x1, x2, x3, x4, x5, x6)  =  U6_gggg(x6)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

PERM11_IN_GG(.(T15, T16), .(T17, T18)) → U8_GG(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
PERM11_IN_GG(.(T15, T16), .(T17, T18)) → EQ_LEN117_IN_GG(T16, T18)
EQ_LEN117_IN_GG(.(T27, T28), .(T29, T30)) → U1_GG(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
EQ_LEN117_IN_GG(.(T27, T28), .(T29, T30)) → EQ_LEN117_IN_GG(T28, T30)
PERM11_IN_GG(.(T47, T48), .(T49, T50)) → U9_GG(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_GG(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_GG(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
U9_GG(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → P29_IN_GGGG(T47, T49, T50, T48)
P29_IN_GGGG(T47, T49, T50, T48) → U3_GGGG(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
P29_IN_GGGG(T47, T49, T50, T48) → MEMBER30_IN_GGG(T47, T49, T50)
MEMBER30_IN_GGG(T79, T80, T81) → U7_GGG(T79, T80, T81, member38_in_gg(T79, T81))
MEMBER30_IN_GGG(T79, T80, T81) → MEMBER38_IN_GG(T79, T81)
MEMBER38_IN_GG(T102, .(T103, T104)) → U2_GG(T102, T103, T104, member38_in_gg(T102, T104))
MEMBER38_IN_GG(T102, .(T103, T104)) → MEMBER38_IN_GG(T102, T104)
P29_IN_GGGG(T47, T121, T122, []) → U4_GGGG(T47, T121, T122, member30_in_ggg(T47, T121, T122))
P29_IN_GGGG(T47, T121, T122, []) → MEMBER30_IN_GGG(T47, T121, T122)
P29_IN_GGGG(T47, T133, T134, .(T131, T132)) → U5_GGGG(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
P29_IN_GGGG(T47, T133, T134, .(T131, T132)) → MEMBER30_IN_GGG(T47, T133, T134)
U5_GGGG(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_GGGG(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U5_GGGG(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → P29_IN_GGGG(T131, T133, T134, T132)

The TRS R consists of the following rules:

perm11_in_gg([], []) → perm11_out_gg([], [])
perm11_in_gg(.(T15, T16), .(T17, T18)) → U8_gg(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
eq_len117_in_gg([], []) → eq_len117_out_gg([], [])
eq_len117_in_gg(.(T27, T28), .(T29, T30)) → U1_gg(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
U1_gg(T27, T28, T29, T30, eq_len117_out_gg(T28, T30)) → eq_len117_out_gg(.(T27, T28), .(T29, T30))
U8_gg(T15, T16, T17, T18, eq_len117_out_gg(T16, T18)) → perm11_out_gg(.(T15, T16), .(T17, T18))
perm11_in_gg(.(T47, T48), .(T49, T50)) → U9_gg(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_gg(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_gg(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
p29_in_gggg(T47, T49, T50, T48) → U3_gggg(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
member30_in_ggg(T67, T67, T68) → member30_out_ggg(T67, T67, T68)
member30_in_ggg(T79, T80, T81) → U7_ggg(T79, T80, T81, member38_in_gg(T79, T81))
member38_in_gg(T94, .(T94, T95)) → member38_out_gg(T94, .(T94, T95))
member38_in_gg(T102, .(T103, T104)) → U2_gg(T102, T103, T104, member38_in_gg(T102, T104))
U2_gg(T102, T103, T104, member38_out_gg(T102, T104)) → member38_out_gg(T102, .(T103, T104))
U7_ggg(T79, T80, T81, member38_out_gg(T79, T81)) → member30_out_ggg(T79, T80, T81)
U3_gggg(T47, T49, T50, T48, member30_out_ggg(T47, T49, T50)) → p29_out_gggg(T47, T49, T50, T48)
p29_in_gggg(T47, T121, T122, []) → U4_gggg(T47, T121, T122, member30_in_ggg(T47, T121, T122))
U4_gggg(T47, T121, T122, member30_out_ggg(T47, T121, T122)) → p29_out_gggg(T47, T121, T122, [])
p29_in_gggg(T47, T133, T134, .(T131, T132)) → U5_gggg(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_gggg(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_gggg(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U6_gggg(T47, T133, T134, T131, T132, p29_out_gggg(T131, T133, T134, T132)) → p29_out_gggg(T47, T133, T134, .(T131, T132))
U10_gg(T47, T48, T49, T50, p29_out_gggg(T47, T49, T50, T48)) → perm11_out_gg(.(T47, T48), .(T49, T50))

The argument filtering Pi contains the following mapping:
perm11_in_gg(x1, x2)  =  perm11_in_gg(x1, x2)
[]  =  []
perm11_out_gg(x1, x2)  =  perm11_out_gg
.(x1, x2)  =  .(x1, x2)
U8_gg(x1, x2, x3, x4, x5)  =  U8_gg(x5)
eq_len117_in_gg(x1, x2)  =  eq_len117_in_gg(x1, x2)
eq_len117_out_gg(x1, x2)  =  eq_len117_out_gg
U1_gg(x1, x2, x3, x4, x5)  =  U1_gg(x5)
U9_gg(x1, x2, x3, x4, x5)  =  U9_gg(x1, x2, x3, x4, x5)
U10_gg(x1, x2, x3, x4, x5)  =  U10_gg(x5)
p29_in_gggg(x1, x2, x3, x4)  =  p29_in_gggg(x1, x2, x3, x4)
U3_gggg(x1, x2, x3, x4, x5)  =  U3_gggg(x5)
member30_in_ggg(x1, x2, x3)  =  member30_in_ggg(x1, x2, x3)
member30_out_ggg(x1, x2, x3)  =  member30_out_ggg
U7_ggg(x1, x2, x3, x4)  =  U7_ggg(x4)
member38_in_gg(x1, x2)  =  member38_in_gg(x1, x2)
member38_out_gg(x1, x2)  =  member38_out_gg
U2_gg(x1, x2, x3, x4)  =  U2_gg(x4)
p29_out_gggg(x1, x2, x3, x4)  =  p29_out_gggg
U4_gggg(x1, x2, x3, x4)  =  U4_gggg(x4)
U5_gggg(x1, x2, x3, x4, x5, x6)  =  U5_gggg(x2, x3, x4, x5, x6)
U6_gggg(x1, x2, x3, x4, x5, x6)  =  U6_gggg(x6)
PERM11_IN_GG(x1, x2)  =  PERM11_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4, x5)  =  U8_GG(x5)
EQ_LEN117_IN_GG(x1, x2)  =  EQ_LEN117_IN_GG(x1, x2)
U1_GG(x1, x2, x3, x4, x5)  =  U1_GG(x5)
U9_GG(x1, x2, x3, x4, x5)  =  U9_GG(x1, x2, x3, x4, x5)
U10_GG(x1, x2, x3, x4, x5)  =  U10_GG(x5)
P29_IN_GGGG(x1, x2, x3, x4)  =  P29_IN_GGGG(x1, x2, x3, x4)
U3_GGGG(x1, x2, x3, x4, x5)  =  U3_GGGG(x5)
MEMBER30_IN_GGG(x1, x2, x3)  =  MEMBER30_IN_GGG(x1, x2, x3)
U7_GGG(x1, x2, x3, x4)  =  U7_GGG(x4)
MEMBER38_IN_GG(x1, x2)  =  MEMBER38_IN_GG(x1, x2)
U2_GG(x1, x2, x3, x4)  =  U2_GG(x4)
U4_GGGG(x1, x2, x3, x4)  =  U4_GGGG(x4)
U5_GGGG(x1, x2, x3, x4, x5, x6)  =  U5_GGGG(x2, x3, x4, x5, x6)
U6_GGGG(x1, x2, x3, x4, x5, x6)  =  U6_GGGG(x6)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM11_IN_GG(.(T15, T16), .(T17, T18)) → U8_GG(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
PERM11_IN_GG(.(T15, T16), .(T17, T18)) → EQ_LEN117_IN_GG(T16, T18)
EQ_LEN117_IN_GG(.(T27, T28), .(T29, T30)) → U1_GG(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
EQ_LEN117_IN_GG(.(T27, T28), .(T29, T30)) → EQ_LEN117_IN_GG(T28, T30)
PERM11_IN_GG(.(T47, T48), .(T49, T50)) → U9_GG(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_GG(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_GG(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
U9_GG(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → P29_IN_GGGG(T47, T49, T50, T48)
P29_IN_GGGG(T47, T49, T50, T48) → U3_GGGG(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
P29_IN_GGGG(T47, T49, T50, T48) → MEMBER30_IN_GGG(T47, T49, T50)
MEMBER30_IN_GGG(T79, T80, T81) → U7_GGG(T79, T80, T81, member38_in_gg(T79, T81))
MEMBER30_IN_GGG(T79, T80, T81) → MEMBER38_IN_GG(T79, T81)
MEMBER38_IN_GG(T102, .(T103, T104)) → U2_GG(T102, T103, T104, member38_in_gg(T102, T104))
MEMBER38_IN_GG(T102, .(T103, T104)) → MEMBER38_IN_GG(T102, T104)
P29_IN_GGGG(T47, T121, T122, []) → U4_GGGG(T47, T121, T122, member30_in_ggg(T47, T121, T122))
P29_IN_GGGG(T47, T121, T122, []) → MEMBER30_IN_GGG(T47, T121, T122)
P29_IN_GGGG(T47, T133, T134, .(T131, T132)) → U5_GGGG(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
P29_IN_GGGG(T47, T133, T134, .(T131, T132)) → MEMBER30_IN_GGG(T47, T133, T134)
U5_GGGG(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_GGGG(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U5_GGGG(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → P29_IN_GGGG(T131, T133, T134, T132)

The TRS R consists of the following rules:

perm11_in_gg([], []) → perm11_out_gg([], [])
perm11_in_gg(.(T15, T16), .(T17, T18)) → U8_gg(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
eq_len117_in_gg([], []) → eq_len117_out_gg([], [])
eq_len117_in_gg(.(T27, T28), .(T29, T30)) → U1_gg(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
U1_gg(T27, T28, T29, T30, eq_len117_out_gg(T28, T30)) → eq_len117_out_gg(.(T27, T28), .(T29, T30))
U8_gg(T15, T16, T17, T18, eq_len117_out_gg(T16, T18)) → perm11_out_gg(.(T15, T16), .(T17, T18))
perm11_in_gg(.(T47, T48), .(T49, T50)) → U9_gg(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_gg(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_gg(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
p29_in_gggg(T47, T49, T50, T48) → U3_gggg(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
member30_in_ggg(T67, T67, T68) → member30_out_ggg(T67, T67, T68)
member30_in_ggg(T79, T80, T81) → U7_ggg(T79, T80, T81, member38_in_gg(T79, T81))
member38_in_gg(T94, .(T94, T95)) → member38_out_gg(T94, .(T94, T95))
member38_in_gg(T102, .(T103, T104)) → U2_gg(T102, T103, T104, member38_in_gg(T102, T104))
U2_gg(T102, T103, T104, member38_out_gg(T102, T104)) → member38_out_gg(T102, .(T103, T104))
U7_ggg(T79, T80, T81, member38_out_gg(T79, T81)) → member30_out_ggg(T79, T80, T81)
U3_gggg(T47, T49, T50, T48, member30_out_ggg(T47, T49, T50)) → p29_out_gggg(T47, T49, T50, T48)
p29_in_gggg(T47, T121, T122, []) → U4_gggg(T47, T121, T122, member30_in_ggg(T47, T121, T122))
U4_gggg(T47, T121, T122, member30_out_ggg(T47, T121, T122)) → p29_out_gggg(T47, T121, T122, [])
p29_in_gggg(T47, T133, T134, .(T131, T132)) → U5_gggg(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_gggg(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_gggg(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U6_gggg(T47, T133, T134, T131, T132, p29_out_gggg(T131, T133, T134, T132)) → p29_out_gggg(T47, T133, T134, .(T131, T132))
U10_gg(T47, T48, T49, T50, p29_out_gggg(T47, T49, T50, T48)) → perm11_out_gg(.(T47, T48), .(T49, T50))

The argument filtering Pi contains the following mapping:
perm11_in_gg(x1, x2)  =  perm11_in_gg(x1, x2)
[]  =  []
perm11_out_gg(x1, x2)  =  perm11_out_gg
.(x1, x2)  =  .(x1, x2)
U8_gg(x1, x2, x3, x4, x5)  =  U8_gg(x5)
eq_len117_in_gg(x1, x2)  =  eq_len117_in_gg(x1, x2)
eq_len117_out_gg(x1, x2)  =  eq_len117_out_gg
U1_gg(x1, x2, x3, x4, x5)  =  U1_gg(x5)
U9_gg(x1, x2, x3, x4, x5)  =  U9_gg(x1, x2, x3, x4, x5)
U10_gg(x1, x2, x3, x4, x5)  =  U10_gg(x5)
p29_in_gggg(x1, x2, x3, x4)  =  p29_in_gggg(x1, x2, x3, x4)
U3_gggg(x1, x2, x3, x4, x5)  =  U3_gggg(x5)
member30_in_ggg(x1, x2, x3)  =  member30_in_ggg(x1, x2, x3)
member30_out_ggg(x1, x2, x3)  =  member30_out_ggg
U7_ggg(x1, x2, x3, x4)  =  U7_ggg(x4)
member38_in_gg(x1, x2)  =  member38_in_gg(x1, x2)
member38_out_gg(x1, x2)  =  member38_out_gg
U2_gg(x1, x2, x3, x4)  =  U2_gg(x4)
p29_out_gggg(x1, x2, x3, x4)  =  p29_out_gggg
U4_gggg(x1, x2, x3, x4)  =  U4_gggg(x4)
U5_gggg(x1, x2, x3, x4, x5, x6)  =  U5_gggg(x2, x3, x4, x5, x6)
U6_gggg(x1, x2, x3, x4, x5, x6)  =  U6_gggg(x6)
PERM11_IN_GG(x1, x2)  =  PERM11_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4, x5)  =  U8_GG(x5)
EQ_LEN117_IN_GG(x1, x2)  =  EQ_LEN117_IN_GG(x1, x2)
U1_GG(x1, x2, x3, x4, x5)  =  U1_GG(x5)
U9_GG(x1, x2, x3, x4, x5)  =  U9_GG(x1, x2, x3, x4, x5)
U10_GG(x1, x2, x3, x4, x5)  =  U10_GG(x5)
P29_IN_GGGG(x1, x2, x3, x4)  =  P29_IN_GGGG(x1, x2, x3, x4)
U3_GGGG(x1, x2, x3, x4, x5)  =  U3_GGGG(x5)
MEMBER30_IN_GGG(x1, x2, x3)  =  MEMBER30_IN_GGG(x1, x2, x3)
U7_GGG(x1, x2, x3, x4)  =  U7_GGG(x4)
MEMBER38_IN_GG(x1, x2)  =  MEMBER38_IN_GG(x1, x2)
U2_GG(x1, x2, x3, x4)  =  U2_GG(x4)
U4_GGGG(x1, x2, x3, x4)  =  U4_GGGG(x4)
U5_GGGG(x1, x2, x3, x4, x5, x6)  =  U5_GGGG(x2, x3, x4, x5, x6)
U6_GGGG(x1, x2, x3, x4, x5, x6)  =  U6_GGGG(x6)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 15 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER38_IN_GG(T102, .(T103, T104)) → MEMBER38_IN_GG(T102, T104)

The TRS R consists of the following rules:

perm11_in_gg([], []) → perm11_out_gg([], [])
perm11_in_gg(.(T15, T16), .(T17, T18)) → U8_gg(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
eq_len117_in_gg([], []) → eq_len117_out_gg([], [])
eq_len117_in_gg(.(T27, T28), .(T29, T30)) → U1_gg(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
U1_gg(T27, T28, T29, T30, eq_len117_out_gg(T28, T30)) → eq_len117_out_gg(.(T27, T28), .(T29, T30))
U8_gg(T15, T16, T17, T18, eq_len117_out_gg(T16, T18)) → perm11_out_gg(.(T15, T16), .(T17, T18))
perm11_in_gg(.(T47, T48), .(T49, T50)) → U9_gg(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_gg(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_gg(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
p29_in_gggg(T47, T49, T50, T48) → U3_gggg(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
member30_in_ggg(T67, T67, T68) → member30_out_ggg(T67, T67, T68)
member30_in_ggg(T79, T80, T81) → U7_ggg(T79, T80, T81, member38_in_gg(T79, T81))
member38_in_gg(T94, .(T94, T95)) → member38_out_gg(T94, .(T94, T95))
member38_in_gg(T102, .(T103, T104)) → U2_gg(T102, T103, T104, member38_in_gg(T102, T104))
U2_gg(T102, T103, T104, member38_out_gg(T102, T104)) → member38_out_gg(T102, .(T103, T104))
U7_ggg(T79, T80, T81, member38_out_gg(T79, T81)) → member30_out_ggg(T79, T80, T81)
U3_gggg(T47, T49, T50, T48, member30_out_ggg(T47, T49, T50)) → p29_out_gggg(T47, T49, T50, T48)
p29_in_gggg(T47, T121, T122, []) → U4_gggg(T47, T121, T122, member30_in_ggg(T47, T121, T122))
U4_gggg(T47, T121, T122, member30_out_ggg(T47, T121, T122)) → p29_out_gggg(T47, T121, T122, [])
p29_in_gggg(T47, T133, T134, .(T131, T132)) → U5_gggg(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_gggg(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_gggg(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U6_gggg(T47, T133, T134, T131, T132, p29_out_gggg(T131, T133, T134, T132)) → p29_out_gggg(T47, T133, T134, .(T131, T132))
U10_gg(T47, T48, T49, T50, p29_out_gggg(T47, T49, T50, T48)) → perm11_out_gg(.(T47, T48), .(T49, T50))

The argument filtering Pi contains the following mapping:
perm11_in_gg(x1, x2)  =  perm11_in_gg(x1, x2)
[]  =  []
perm11_out_gg(x1, x2)  =  perm11_out_gg
.(x1, x2)  =  .(x1, x2)
U8_gg(x1, x2, x3, x4, x5)  =  U8_gg(x5)
eq_len117_in_gg(x1, x2)  =  eq_len117_in_gg(x1, x2)
eq_len117_out_gg(x1, x2)  =  eq_len117_out_gg
U1_gg(x1, x2, x3, x4, x5)  =  U1_gg(x5)
U9_gg(x1, x2, x3, x4, x5)  =  U9_gg(x1, x2, x3, x4, x5)
U10_gg(x1, x2, x3, x4, x5)  =  U10_gg(x5)
p29_in_gggg(x1, x2, x3, x4)  =  p29_in_gggg(x1, x2, x3, x4)
U3_gggg(x1, x2, x3, x4, x5)  =  U3_gggg(x5)
member30_in_ggg(x1, x2, x3)  =  member30_in_ggg(x1, x2, x3)
member30_out_ggg(x1, x2, x3)  =  member30_out_ggg
U7_ggg(x1, x2, x3, x4)  =  U7_ggg(x4)
member38_in_gg(x1, x2)  =  member38_in_gg(x1, x2)
member38_out_gg(x1, x2)  =  member38_out_gg
U2_gg(x1, x2, x3, x4)  =  U2_gg(x4)
p29_out_gggg(x1, x2, x3, x4)  =  p29_out_gggg
U4_gggg(x1, x2, x3, x4)  =  U4_gggg(x4)
U5_gggg(x1, x2, x3, x4, x5, x6)  =  U5_gggg(x2, x3, x4, x5, x6)
U6_gggg(x1, x2, x3, x4, x5, x6)  =  U6_gggg(x6)
MEMBER38_IN_GG(x1, x2)  =  MEMBER38_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MEMBER38_IN_GG(T102, .(T103, T104)) → MEMBER38_IN_GG(T102, T104)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MEMBER38_IN_GG(T102, .(T103, T104)) → MEMBER38_IN_GG(T102, T104)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MEMBER38_IN_GG(T102, .(T103, T104)) → MEMBER38_IN_GG(T102, T104)
    The graph contains the following edges 1 >= 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P29_IN_GGGG(T47, T133, T134, .(T131, T132)) → U5_GGGG(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_GGGG(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → P29_IN_GGGG(T131, T133, T134, T132)

The TRS R consists of the following rules:

perm11_in_gg([], []) → perm11_out_gg([], [])
perm11_in_gg(.(T15, T16), .(T17, T18)) → U8_gg(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
eq_len117_in_gg([], []) → eq_len117_out_gg([], [])
eq_len117_in_gg(.(T27, T28), .(T29, T30)) → U1_gg(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
U1_gg(T27, T28, T29, T30, eq_len117_out_gg(T28, T30)) → eq_len117_out_gg(.(T27, T28), .(T29, T30))
U8_gg(T15, T16, T17, T18, eq_len117_out_gg(T16, T18)) → perm11_out_gg(.(T15, T16), .(T17, T18))
perm11_in_gg(.(T47, T48), .(T49, T50)) → U9_gg(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_gg(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_gg(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
p29_in_gggg(T47, T49, T50, T48) → U3_gggg(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
member30_in_ggg(T67, T67, T68) → member30_out_ggg(T67, T67, T68)
member30_in_ggg(T79, T80, T81) → U7_ggg(T79, T80, T81, member38_in_gg(T79, T81))
member38_in_gg(T94, .(T94, T95)) → member38_out_gg(T94, .(T94, T95))
member38_in_gg(T102, .(T103, T104)) → U2_gg(T102, T103, T104, member38_in_gg(T102, T104))
U2_gg(T102, T103, T104, member38_out_gg(T102, T104)) → member38_out_gg(T102, .(T103, T104))
U7_ggg(T79, T80, T81, member38_out_gg(T79, T81)) → member30_out_ggg(T79, T80, T81)
U3_gggg(T47, T49, T50, T48, member30_out_ggg(T47, T49, T50)) → p29_out_gggg(T47, T49, T50, T48)
p29_in_gggg(T47, T121, T122, []) → U4_gggg(T47, T121, T122, member30_in_ggg(T47, T121, T122))
U4_gggg(T47, T121, T122, member30_out_ggg(T47, T121, T122)) → p29_out_gggg(T47, T121, T122, [])
p29_in_gggg(T47, T133, T134, .(T131, T132)) → U5_gggg(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_gggg(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_gggg(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U6_gggg(T47, T133, T134, T131, T132, p29_out_gggg(T131, T133, T134, T132)) → p29_out_gggg(T47, T133, T134, .(T131, T132))
U10_gg(T47, T48, T49, T50, p29_out_gggg(T47, T49, T50, T48)) → perm11_out_gg(.(T47, T48), .(T49, T50))

The argument filtering Pi contains the following mapping:
perm11_in_gg(x1, x2)  =  perm11_in_gg(x1, x2)
[]  =  []
perm11_out_gg(x1, x2)  =  perm11_out_gg
.(x1, x2)  =  .(x1, x2)
U8_gg(x1, x2, x3, x4, x5)  =  U8_gg(x5)
eq_len117_in_gg(x1, x2)  =  eq_len117_in_gg(x1, x2)
eq_len117_out_gg(x1, x2)  =  eq_len117_out_gg
U1_gg(x1, x2, x3, x4, x5)  =  U1_gg(x5)
U9_gg(x1, x2, x3, x4, x5)  =  U9_gg(x1, x2, x3, x4, x5)
U10_gg(x1, x2, x3, x4, x5)  =  U10_gg(x5)
p29_in_gggg(x1, x2, x3, x4)  =  p29_in_gggg(x1, x2, x3, x4)
U3_gggg(x1, x2, x3, x4, x5)  =  U3_gggg(x5)
member30_in_ggg(x1, x2, x3)  =  member30_in_ggg(x1, x2, x3)
member30_out_ggg(x1, x2, x3)  =  member30_out_ggg
U7_ggg(x1, x2, x3, x4)  =  U7_ggg(x4)
member38_in_gg(x1, x2)  =  member38_in_gg(x1, x2)
member38_out_gg(x1, x2)  =  member38_out_gg
U2_gg(x1, x2, x3, x4)  =  U2_gg(x4)
p29_out_gggg(x1, x2, x3, x4)  =  p29_out_gggg
U4_gggg(x1, x2, x3, x4)  =  U4_gggg(x4)
U5_gggg(x1, x2, x3, x4, x5, x6)  =  U5_gggg(x2, x3, x4, x5, x6)
U6_gggg(x1, x2, x3, x4, x5, x6)  =  U6_gggg(x6)
P29_IN_GGGG(x1, x2, x3, x4)  =  P29_IN_GGGG(x1, x2, x3, x4)
U5_GGGG(x1, x2, x3, x4, x5, x6)  =  U5_GGGG(x2, x3, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P29_IN_GGGG(T47, T133, T134, .(T131, T132)) → U5_GGGG(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_GGGG(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → P29_IN_GGGG(T131, T133, T134, T132)

The TRS R consists of the following rules:

member30_in_ggg(T67, T67, T68) → member30_out_ggg(T67, T67, T68)
member30_in_ggg(T79, T80, T81) → U7_ggg(T79, T80, T81, member38_in_gg(T79, T81))
U7_ggg(T79, T80, T81, member38_out_gg(T79, T81)) → member30_out_ggg(T79, T80, T81)
member38_in_gg(T94, .(T94, T95)) → member38_out_gg(T94, .(T94, T95))
member38_in_gg(T102, .(T103, T104)) → U2_gg(T102, T103, T104, member38_in_gg(T102, T104))
U2_gg(T102, T103, T104, member38_out_gg(T102, T104)) → member38_out_gg(T102, .(T103, T104))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
member30_in_ggg(x1, x2, x3)  =  member30_in_ggg(x1, x2, x3)
member30_out_ggg(x1, x2, x3)  =  member30_out_ggg
U7_ggg(x1, x2, x3, x4)  =  U7_ggg(x4)
member38_in_gg(x1, x2)  =  member38_in_gg(x1, x2)
member38_out_gg(x1, x2)  =  member38_out_gg
U2_gg(x1, x2, x3, x4)  =  U2_gg(x4)
P29_IN_GGGG(x1, x2, x3, x4)  =  P29_IN_GGGG(x1, x2, x3, x4)
U5_GGGG(x1, x2, x3, x4, x5, x6)  =  U5_GGGG(x2, x3, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P29_IN_GGGG(T47, T133, T134, .(T131, T132)) → U5_GGGG(T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_GGGG(T133, T134, T131, T132, member30_out_ggg) → P29_IN_GGGG(T131, T133, T134, T132)

The TRS R consists of the following rules:

member30_in_ggg(T67, T67, T68) → member30_out_ggg
member30_in_ggg(T79, T80, T81) → U7_ggg(member38_in_gg(T79, T81))
U7_ggg(member38_out_gg) → member30_out_ggg
member38_in_gg(T94, .(T94, T95)) → member38_out_gg
member38_in_gg(T102, .(T103, T104)) → U2_gg(member38_in_gg(T102, T104))
U2_gg(member38_out_gg) → member38_out_gg

The set Q consists of the following terms:

member30_in_ggg(x0, x1, x2)
U7_ggg(x0)
member38_in_gg(x0, x1)
U2_gg(x0)

We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U5_GGGG(T133, T134, T131, T132, member30_out_ggg) → P29_IN_GGGG(T131, T133, T134, T132)
    The graph contains the following edges 3 >= 1, 1 >= 2, 2 >= 3, 4 >= 4

  • P29_IN_GGGG(T47, T133, T134, .(T131, T132)) → U5_GGGG(T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
    The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 3, 4 > 4

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EQ_LEN117_IN_GG(.(T27, T28), .(T29, T30)) → EQ_LEN117_IN_GG(T28, T30)

The TRS R consists of the following rules:

perm11_in_gg([], []) → perm11_out_gg([], [])
perm11_in_gg(.(T15, T16), .(T17, T18)) → U8_gg(T15, T16, T17, T18, eq_len117_in_gg(T16, T18))
eq_len117_in_gg([], []) → eq_len117_out_gg([], [])
eq_len117_in_gg(.(T27, T28), .(T29, T30)) → U1_gg(T27, T28, T29, T30, eq_len117_in_gg(T28, T30))
U1_gg(T27, T28, T29, T30, eq_len117_out_gg(T28, T30)) → eq_len117_out_gg(.(T27, T28), .(T29, T30))
U8_gg(T15, T16, T17, T18, eq_len117_out_gg(T16, T18)) → perm11_out_gg(.(T15, T16), .(T17, T18))
perm11_in_gg(.(T47, T48), .(T49, T50)) → U9_gg(T47, T48, T49, T50, eq_len117_in_gg(T48, T50))
U9_gg(T47, T48, T49, T50, eq_len117_out_gg(T48, T50)) → U10_gg(T47, T48, T49, T50, p29_in_gggg(T47, T49, T50, T48))
p29_in_gggg(T47, T49, T50, T48) → U3_gggg(T47, T49, T50, T48, member30_in_ggg(T47, T49, T50))
member30_in_ggg(T67, T67, T68) → member30_out_ggg(T67, T67, T68)
member30_in_ggg(T79, T80, T81) → U7_ggg(T79, T80, T81, member38_in_gg(T79, T81))
member38_in_gg(T94, .(T94, T95)) → member38_out_gg(T94, .(T94, T95))
member38_in_gg(T102, .(T103, T104)) → U2_gg(T102, T103, T104, member38_in_gg(T102, T104))
U2_gg(T102, T103, T104, member38_out_gg(T102, T104)) → member38_out_gg(T102, .(T103, T104))
U7_ggg(T79, T80, T81, member38_out_gg(T79, T81)) → member30_out_ggg(T79, T80, T81)
U3_gggg(T47, T49, T50, T48, member30_out_ggg(T47, T49, T50)) → p29_out_gggg(T47, T49, T50, T48)
p29_in_gggg(T47, T121, T122, []) → U4_gggg(T47, T121, T122, member30_in_ggg(T47, T121, T122))
U4_gggg(T47, T121, T122, member30_out_ggg(T47, T121, T122)) → p29_out_gggg(T47, T121, T122, [])
p29_in_gggg(T47, T133, T134, .(T131, T132)) → U5_gggg(T47, T133, T134, T131, T132, member30_in_ggg(T47, T133, T134))
U5_gggg(T47, T133, T134, T131, T132, member30_out_ggg(T47, T133, T134)) → U6_gggg(T47, T133, T134, T131, T132, p29_in_gggg(T131, T133, T134, T132))
U6_gggg(T47, T133, T134, T131, T132, p29_out_gggg(T131, T133, T134, T132)) → p29_out_gggg(T47, T133, T134, .(T131, T132))
U10_gg(T47, T48, T49, T50, p29_out_gggg(T47, T49, T50, T48)) → perm11_out_gg(.(T47, T48), .(T49, T50))

The argument filtering Pi contains the following mapping:
perm11_in_gg(x1, x2)  =  perm11_in_gg(x1, x2)
[]  =  []
perm11_out_gg(x1, x2)  =  perm11_out_gg
.(x1, x2)  =  .(x1, x2)
U8_gg(x1, x2, x3, x4, x5)  =  U8_gg(x5)
eq_len117_in_gg(x1, x2)  =  eq_len117_in_gg(x1, x2)
eq_len117_out_gg(x1, x2)  =  eq_len117_out_gg
U1_gg(x1, x2, x3, x4, x5)  =  U1_gg(x5)
U9_gg(x1, x2, x3, x4, x5)  =  U9_gg(x1, x2, x3, x4, x5)
U10_gg(x1, x2, x3, x4, x5)  =  U10_gg(x5)
p29_in_gggg(x1, x2, x3, x4)  =  p29_in_gggg(x1, x2, x3, x4)
U3_gggg(x1, x2, x3, x4, x5)  =  U3_gggg(x5)
member30_in_ggg(x1, x2, x3)  =  member30_in_ggg(x1, x2, x3)
member30_out_ggg(x1, x2, x3)  =  member30_out_ggg
U7_ggg(x1, x2, x3, x4)  =  U7_ggg(x4)
member38_in_gg(x1, x2)  =  member38_in_gg(x1, x2)
member38_out_gg(x1, x2)  =  member38_out_gg
U2_gg(x1, x2, x3, x4)  =  U2_gg(x4)
p29_out_gggg(x1, x2, x3, x4)  =  p29_out_gggg
U4_gggg(x1, x2, x3, x4)  =  U4_gggg(x4)
U5_gggg(x1, x2, x3, x4, x5, x6)  =  U5_gggg(x2, x3, x4, x5, x6)
U6_gggg(x1, x2, x3, x4, x5, x6)  =  U6_gggg(x6)
EQ_LEN117_IN_GG(x1, x2)  =  EQ_LEN117_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EQ_LEN117_IN_GG(.(T27, T28), .(T29, T30)) → EQ_LEN117_IN_GG(T28, T30)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ_LEN117_IN_GG(.(T27, T28), .(T29, T30)) → EQ_LEN117_IN_GG(T28, T30)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • EQ_LEN117_IN_GG(.(T27, T28), .(T29, T30)) → EQ_LEN117_IN_GG(T28, T30)
    The graph contains the following edges 1 > 1, 2 > 2

(29) YES