0 Prolog
↳1 PrologToPiTRSProof (⇐)
↳2 PiTRS
↳3 DependencyPairsProof (⇔)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 PiDP
↳8 UsableRulesProof (⇔)
↳9 PiDP
↳10 PiDPToQDPProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 PiDP
↳15 UsableRulesProof (⇔)
↳16 PiDP
↳17 PiDPToQDPProof (⇐)
↳18 QDP
↳19 QDPSizeChangeProof (⇔)
↳20 TRUE
↳21 PiDP
↳22 UsableRulesProof (⇔)
↳23 PiDP
↳24 PiDPToQDPProof (⇔)
↳25 QDP
↳26 QDPSizeChangeProof (⇔)
↳27 TRUE
↳28 PrologToPiTRSProof (⇐)
↳29 PiTRS
↳30 DependencyPairsProof (⇔)
↳31 PiDP
↳32 DependencyGraphProof (⇔)
↳33 AND
↳34 PiDP
↳35 UsableRulesProof (⇔)
↳36 PiDP
↳37 PiDPToQDPProof (⇔)
↳38 QDP
↳39 QDPSizeChangeProof (⇔)
↳40 TRUE
↳41 PiDP
↳42 UsableRulesProof (⇔)
↳43 PiDP
↳44 PiDPToQDPProof (⇔)
↳45 QDP
↳46 QDPSizeChangeProof (⇔)
↳47 TRUE
↳48 PiDP
↳49 UsableRulesProof (⇔)
↳50 PiDP
↳51 PiDPToQDPProof (⇔)
↳52 QDP
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
PERM1_IN_GG(L, M) → U1_GG(L, M, eq_len1_in_gg(L, M))
PERM1_IN_GG(L, M) → EQ_LEN1_IN_GG(L, M)
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → U3_GG(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
U1_GG(L, M, eq_len1_out_gg(L, M)) → U2_GG(L, M, same_sets_in_gg(L, M))
U1_GG(L, M, eq_len1_out_gg(L, M)) → SAME_SETS_IN_GG(L, M)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
SAME_SETS_IN_GG(.(X, Xs), L) → MEMBER_IN_GG(X, L)
MEMBER_IN_GG(X, .(X4, T)) → U4_GG(X, X4, T, member_in_gg(X, T))
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
U5_GG(X, Xs, L, member_out_gg(X, L)) → U6_GG(X, Xs, L, same_sets_in_gg(Xs, L))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
PERM1_IN_GG(L, M) → U1_GG(L, M, eq_len1_in_gg(L, M))
PERM1_IN_GG(L, M) → EQ_LEN1_IN_GG(L, M)
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → U3_GG(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
U1_GG(L, M, eq_len1_out_gg(L, M)) → U2_GG(L, M, same_sets_in_gg(L, M))
U1_GG(L, M, eq_len1_out_gg(L, M)) → SAME_SETS_IN_GG(L, M)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
SAME_SETS_IN_GG(.(X, Xs), L) → MEMBER_IN_GG(X, L)
MEMBER_IN_GG(X, .(X4, T)) → U4_GG(X, X4, T, member_in_gg(X, T))
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
U5_GG(X, Xs, L, member_out_gg(X, L)) → U6_GG(X, Xs, L, same_sets_in_gg(Xs, L))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
From the DPs we obtained the following set of size-change graphs:
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_GG(Xs, L, member_out_gg) → SAME_SETS_IN_GG(Xs, L)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg
member_in_gg(X, .(X4, T)) → U4_gg(member_in_gg(X, T))
U4_gg(member_out_gg) → member_out_gg
member_in_gg(x0, x1)
U4_gg(x0)
From the DPs we obtained the following set of size-change graphs:
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
From the DPs we obtained the following set of size-change graphs:
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
PERM1_IN_GG(L, M) → U1_GG(L, M, eq_len1_in_gg(L, M))
PERM1_IN_GG(L, M) → EQ_LEN1_IN_GG(L, M)
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → U3_GG(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
U1_GG(L, M, eq_len1_out_gg(L, M)) → U2_GG(L, M, same_sets_in_gg(L, M))
U1_GG(L, M, eq_len1_out_gg(L, M)) → SAME_SETS_IN_GG(L, M)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
SAME_SETS_IN_GG(.(X, Xs), L) → MEMBER_IN_GG(X, L)
MEMBER_IN_GG(X, .(X4, T)) → U4_GG(X, X4, T, member_in_gg(X, T))
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
U5_GG(X, Xs, L, member_out_gg(X, L)) → U6_GG(X, Xs, L, same_sets_in_gg(Xs, L))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
PERM1_IN_GG(L, M) → U1_GG(L, M, eq_len1_in_gg(L, M))
PERM1_IN_GG(L, M) → EQ_LEN1_IN_GG(L, M)
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → U3_GG(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
U1_GG(L, M, eq_len1_out_gg(L, M)) → U2_GG(L, M, same_sets_in_gg(L, M))
U1_GG(L, M, eq_len1_out_gg(L, M)) → SAME_SETS_IN_GG(L, M)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
SAME_SETS_IN_GG(.(X, Xs), L) → MEMBER_IN_GG(X, L)
MEMBER_IN_GG(X, .(X4, T)) → U4_GG(X, X4, T, member_in_gg(X, T))
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
U5_GG(X, Xs, L, member_out_gg(X, L)) → U6_GG(X, Xs, L, same_sets_in_gg(Xs, L))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
MEMBER_IN_GG(X, .(X4, T)) → MEMBER_IN_GG(X, T)
From the DPs we obtained the following set of size-change graphs:
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_GG(X, Xs, L, member_out_gg(X, L)) → SAME_SETS_IN_GG(Xs, L)
SAME_SETS_IN_GG(.(X, Xs), L) → U5_GG(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
member_in_gg(x0, x1)
U4_gg(x0, x1, x2, x3)
From the DPs we obtained the following set of size-change graphs:
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
perm1_in_gg(L, M) → U1_gg(L, M, eq_len1_in_gg(L, M))
eq_len1_in_gg([], []) → eq_len1_out_gg([], [])
eq_len1_in_gg(.(X1, Xs), .(X2, Ys)) → U3_gg(X1, Xs, X2, Ys, eq_len1_in_gg(Xs, Ys))
U3_gg(X1, Xs, X2, Ys, eq_len1_out_gg(Xs, Ys)) → eq_len1_out_gg(.(X1, Xs), .(X2, Ys))
U1_gg(L, M, eq_len1_out_gg(L, M)) → U2_gg(L, M, same_sets_in_gg(L, M))
same_sets_in_gg([], X5) → same_sets_out_gg([], X5)
same_sets_in_gg(.(X, Xs), L) → U5_gg(X, Xs, L, member_in_gg(X, L))
member_in_gg(X, .(X, X3)) → member_out_gg(X, .(X, X3))
member_in_gg(X, .(X4, T)) → U4_gg(X, X4, T, member_in_gg(X, T))
U4_gg(X, X4, T, member_out_gg(X, T)) → member_out_gg(X, .(X4, T))
U5_gg(X, Xs, L, member_out_gg(X, L)) → U6_gg(X, Xs, L, same_sets_in_gg(Xs, L))
U6_gg(X, Xs, L, same_sets_out_gg(Xs, L)) → same_sets_out_gg(.(X, Xs), L)
U2_gg(L, M, same_sets_out_gg(L, M)) → perm1_out_gg(L, M)
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)
EQ_LEN1_IN_GG(.(X1, Xs), .(X2, Ys)) → EQ_LEN1_IN_GG(Xs, Ys)