(0) Obligation:
Clauses:
p(X, X).
p(f(X), g(Y)) :- ','(p(f(X), f(Z)), p(Z, g(W))).
Queries:
p(g,a).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
p6(T21, T21, X9) :- p11(T21, X9).
p11(g(T35), T35).
p11(f(T38), X41) :- p6(T38, X39, X40).
p1(T4, T4).
p1(f(T7), g(T8)) :- p6(T7, X8, X9).
p1(f(T57), g(T44)) :- p11(T57, X55).
Queries:
p1(g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b,f)
p6_in: (b,f,f)
p11_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T7), g(T8)) → U3_ga(T7, T8, p6_in_gaa(T7, X8, X9))
p6_in_gaa(T21, T21, X9) → U1_gaa(T21, X9, p11_in_ga(T21, X9))
p11_in_ga(g(T35), T35) → p11_out_ga(g(T35), T35)
p11_in_ga(f(T38), X41) → U2_ga(T38, X41, p6_in_gaa(T38, X39, X40))
U2_ga(T38, X41, p6_out_gaa(T38, X39, X40)) → p11_out_ga(f(T38), X41)
U1_gaa(T21, X9, p11_out_ga(T21, X9)) → p6_out_gaa(T21, T21, X9)
U3_ga(T7, T8, p6_out_gaa(T7, X8, X9)) → p1_out_ga(f(T7), g(T8))
p1_in_ga(f(T57), g(T44)) → U4_ga(T57, T44, p11_in_ga(T57, X55))
U4_ga(T57, T44, p11_out_ga(T57, X55)) → p1_out_ga(f(T57), g(T44))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
p6_in_gaa(
x1,
x2,
x3) =
p6_in_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
p11_in_ga(
x1,
x2) =
p11_in_ga(
x1)
g(
x1) =
g
p11_out_ga(
x1,
x2) =
p11_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
p6_out_gaa(
x1,
x2,
x3) =
p6_out_gaa(
x1,
x2)
U4_ga(
x1,
x2,
x3) =
U4_ga(
x1,
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T7), g(T8)) → U3_ga(T7, T8, p6_in_gaa(T7, X8, X9))
p6_in_gaa(T21, T21, X9) → U1_gaa(T21, X9, p11_in_ga(T21, X9))
p11_in_ga(g(T35), T35) → p11_out_ga(g(T35), T35)
p11_in_ga(f(T38), X41) → U2_ga(T38, X41, p6_in_gaa(T38, X39, X40))
U2_ga(T38, X41, p6_out_gaa(T38, X39, X40)) → p11_out_ga(f(T38), X41)
U1_gaa(T21, X9, p11_out_ga(T21, X9)) → p6_out_gaa(T21, T21, X9)
U3_ga(T7, T8, p6_out_gaa(T7, X8, X9)) → p1_out_ga(f(T7), g(T8))
p1_in_ga(f(T57), g(T44)) → U4_ga(T57, T44, p11_in_ga(T57, X55))
U4_ga(T57, T44, p11_out_ga(T57, X55)) → p1_out_ga(f(T57), g(T44))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
p6_in_gaa(
x1,
x2,
x3) =
p6_in_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
p11_in_ga(
x1,
x2) =
p11_in_ga(
x1)
g(
x1) =
g
p11_out_ga(
x1,
x2) =
p11_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
p6_out_gaa(
x1,
x2,
x3) =
p6_out_gaa(
x1,
x2)
U4_ga(
x1,
x2,
x3) =
U4_ga(
x1,
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_GA(f(T7), g(T8)) → U3_GA(T7, T8, p6_in_gaa(T7, X8, X9))
P1_IN_GA(f(T7), g(T8)) → P6_IN_GAA(T7, X8, X9)
P6_IN_GAA(T21, T21, X9) → U1_GAA(T21, X9, p11_in_ga(T21, X9))
P6_IN_GAA(T21, T21, X9) → P11_IN_GA(T21, X9)
P11_IN_GA(f(T38), X41) → U2_GA(T38, X41, p6_in_gaa(T38, X39, X40))
P11_IN_GA(f(T38), X41) → P6_IN_GAA(T38, X39, X40)
P1_IN_GA(f(T57), g(T44)) → U4_GA(T57, T44, p11_in_ga(T57, X55))
P1_IN_GA(f(T57), g(T44)) → P11_IN_GA(T57, X55)
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T7), g(T8)) → U3_ga(T7, T8, p6_in_gaa(T7, X8, X9))
p6_in_gaa(T21, T21, X9) → U1_gaa(T21, X9, p11_in_ga(T21, X9))
p11_in_ga(g(T35), T35) → p11_out_ga(g(T35), T35)
p11_in_ga(f(T38), X41) → U2_ga(T38, X41, p6_in_gaa(T38, X39, X40))
U2_ga(T38, X41, p6_out_gaa(T38, X39, X40)) → p11_out_ga(f(T38), X41)
U1_gaa(T21, X9, p11_out_ga(T21, X9)) → p6_out_gaa(T21, T21, X9)
U3_ga(T7, T8, p6_out_gaa(T7, X8, X9)) → p1_out_ga(f(T7), g(T8))
p1_in_ga(f(T57), g(T44)) → U4_ga(T57, T44, p11_in_ga(T57, X55))
U4_ga(T57, T44, p11_out_ga(T57, X55)) → p1_out_ga(f(T57), g(T44))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
p6_in_gaa(
x1,
x2,
x3) =
p6_in_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
p11_in_ga(
x1,
x2) =
p11_in_ga(
x1)
g(
x1) =
g
p11_out_ga(
x1,
x2) =
p11_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
p6_out_gaa(
x1,
x2,
x3) =
p6_out_gaa(
x1,
x2)
U4_ga(
x1,
x2,
x3) =
U4_ga(
x1,
x3)
P1_IN_GA(
x1,
x2) =
P1_IN_GA(
x1)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x1,
x3)
P6_IN_GAA(
x1,
x2,
x3) =
P6_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x1,
x3)
P11_IN_GA(
x1,
x2) =
P11_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
U4_GA(
x1,
x2,
x3) =
U4_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_GA(f(T7), g(T8)) → U3_GA(T7, T8, p6_in_gaa(T7, X8, X9))
P1_IN_GA(f(T7), g(T8)) → P6_IN_GAA(T7, X8, X9)
P6_IN_GAA(T21, T21, X9) → U1_GAA(T21, X9, p11_in_ga(T21, X9))
P6_IN_GAA(T21, T21, X9) → P11_IN_GA(T21, X9)
P11_IN_GA(f(T38), X41) → U2_GA(T38, X41, p6_in_gaa(T38, X39, X40))
P11_IN_GA(f(T38), X41) → P6_IN_GAA(T38, X39, X40)
P1_IN_GA(f(T57), g(T44)) → U4_GA(T57, T44, p11_in_ga(T57, X55))
P1_IN_GA(f(T57), g(T44)) → P11_IN_GA(T57, X55)
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T7), g(T8)) → U3_ga(T7, T8, p6_in_gaa(T7, X8, X9))
p6_in_gaa(T21, T21, X9) → U1_gaa(T21, X9, p11_in_ga(T21, X9))
p11_in_ga(g(T35), T35) → p11_out_ga(g(T35), T35)
p11_in_ga(f(T38), X41) → U2_ga(T38, X41, p6_in_gaa(T38, X39, X40))
U2_ga(T38, X41, p6_out_gaa(T38, X39, X40)) → p11_out_ga(f(T38), X41)
U1_gaa(T21, X9, p11_out_ga(T21, X9)) → p6_out_gaa(T21, T21, X9)
U3_ga(T7, T8, p6_out_gaa(T7, X8, X9)) → p1_out_ga(f(T7), g(T8))
p1_in_ga(f(T57), g(T44)) → U4_ga(T57, T44, p11_in_ga(T57, X55))
U4_ga(T57, T44, p11_out_ga(T57, X55)) → p1_out_ga(f(T57), g(T44))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
p6_in_gaa(
x1,
x2,
x3) =
p6_in_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
p11_in_ga(
x1,
x2) =
p11_in_ga(
x1)
g(
x1) =
g
p11_out_ga(
x1,
x2) =
p11_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
p6_out_gaa(
x1,
x2,
x3) =
p6_out_gaa(
x1,
x2)
U4_ga(
x1,
x2,
x3) =
U4_ga(
x1,
x3)
P1_IN_GA(
x1,
x2) =
P1_IN_GA(
x1)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x1,
x3)
P6_IN_GAA(
x1,
x2,
x3) =
P6_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x1,
x3)
P11_IN_GA(
x1,
x2) =
P11_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
U4_GA(
x1,
x2,
x3) =
U4_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P6_IN_GAA(T21, T21, X9) → P11_IN_GA(T21, X9)
P11_IN_GA(f(T38), X41) → P6_IN_GAA(T38, X39, X40)
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T7), g(T8)) → U3_ga(T7, T8, p6_in_gaa(T7, X8, X9))
p6_in_gaa(T21, T21, X9) → U1_gaa(T21, X9, p11_in_ga(T21, X9))
p11_in_ga(g(T35), T35) → p11_out_ga(g(T35), T35)
p11_in_ga(f(T38), X41) → U2_ga(T38, X41, p6_in_gaa(T38, X39, X40))
U2_ga(T38, X41, p6_out_gaa(T38, X39, X40)) → p11_out_ga(f(T38), X41)
U1_gaa(T21, X9, p11_out_ga(T21, X9)) → p6_out_gaa(T21, T21, X9)
U3_ga(T7, T8, p6_out_gaa(T7, X8, X9)) → p1_out_ga(f(T7), g(T8))
p1_in_ga(f(T57), g(T44)) → U4_ga(T57, T44, p11_in_ga(T57, X55))
U4_ga(T57, T44, p11_out_ga(T57, X55)) → p1_out_ga(f(T57), g(T44))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
p6_in_gaa(
x1,
x2,
x3) =
p6_in_gaa(
x1)
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x1,
x3)
p11_in_ga(
x1,
x2) =
p11_in_ga(
x1)
g(
x1) =
g
p11_out_ga(
x1,
x2) =
p11_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
p6_out_gaa(
x1,
x2,
x3) =
p6_out_gaa(
x1,
x2)
U4_ga(
x1,
x2,
x3) =
U4_ga(
x1,
x3)
P6_IN_GAA(
x1,
x2,
x3) =
P6_IN_GAA(
x1)
P11_IN_GA(
x1,
x2) =
P11_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P6_IN_GAA(T21, T21, X9) → P11_IN_GA(T21, X9)
P11_IN_GA(f(T38), X41) → P6_IN_GAA(T38, X39, X40)
R is empty.
The argument filtering Pi contains the following mapping:
f(
x1) =
f(
x1)
P6_IN_GAA(
x1,
x2,
x3) =
P6_IN_GAA(
x1)
P11_IN_GA(
x1,
x2) =
P11_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P6_IN_GAA(T21) → P11_IN_GA(T21)
P11_IN_GA(f(T38)) → P6_IN_GAA(T38)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P11_IN_GA(f(T38)) → P6_IN_GAA(T38)
The graph contains the following edges 1 > 1
- P6_IN_GAA(T21) → P11_IN_GA(T21)
The graph contains the following edges 1 >= 1
(14) YES