(0) Obligation:
Clauses:
p(X, X).
p(f(X), g(Y)) :- ','(p(f(X), f(Z)), p(Z, g(Y))).
Queries:
p(g,a).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
p1(T4, T4).
p1(f(T22), g(T9)) :- p1(T22, g(T9)).
p1(f(T45), g(T32)) :- p1(T45, g(T32)).
Queries:
p1(g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b,f) (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(T4, T4) → p1_out_gg(T4, T4)
p1_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, p1_in_gg(T45, g(T32)))
U2_gg(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_gg(f(T45), g(T32))
U1_gg(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_gg(f(T22), g(T9))
U1_ga(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_ga(f(T22), g(T9))
p1_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, p1_in_gg(T45, g(T32)))
U2_ga(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_ga(f(T45), g(T32))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
p1_in_gg(
x1,
x2) =
p1_in_gg(
x1,
x2)
g(
x1) =
g
p1_out_gg(
x1,
x2) =
p1_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x3)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(T4, T4) → p1_out_gg(T4, T4)
p1_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, p1_in_gg(T45, g(T32)))
U2_gg(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_gg(f(T45), g(T32))
U1_gg(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_gg(f(T22), g(T9))
U1_ga(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_ga(f(T22), g(T9))
p1_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, p1_in_gg(T45, g(T32)))
U2_ga(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_ga(f(T45), g(T32))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
p1_in_gg(
x1,
x2) =
p1_in_gg(
x1,
x2)
g(
x1) =
g
p1_out_gg(
x1,
x2) =
p1_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x3)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_GA(f(T22), g(T9)) → U1_GA(T22, T9, p1_in_gg(T22, g(T9)))
P1_IN_GA(f(T22), g(T9)) → P1_IN_GG(T22, g(T9))
P1_IN_GG(f(T22), g(T9)) → U1_GG(T22, T9, p1_in_gg(T22, g(T9)))
P1_IN_GG(f(T22), g(T9)) → P1_IN_GG(T22, g(T9))
P1_IN_GG(f(T45), g(T32)) → U2_GG(T45, T32, p1_in_gg(T45, g(T32)))
P1_IN_GA(f(T45), g(T32)) → U2_GA(T45, T32, p1_in_gg(T45, g(T32)))
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(T4, T4) → p1_out_gg(T4, T4)
p1_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, p1_in_gg(T45, g(T32)))
U2_gg(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_gg(f(T45), g(T32))
U1_gg(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_gg(f(T22), g(T9))
U1_ga(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_ga(f(T22), g(T9))
p1_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, p1_in_gg(T45, g(T32)))
U2_ga(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_ga(f(T45), g(T32))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
p1_in_gg(
x1,
x2) =
p1_in_gg(
x1,
x2)
g(
x1) =
g
p1_out_gg(
x1,
x2) =
p1_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x3)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
P1_IN_GA(
x1,
x2) =
P1_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
P1_IN_GG(
x1,
x2) =
P1_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x3)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x1,
x3)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_GA(f(T22), g(T9)) → U1_GA(T22, T9, p1_in_gg(T22, g(T9)))
P1_IN_GA(f(T22), g(T9)) → P1_IN_GG(T22, g(T9))
P1_IN_GG(f(T22), g(T9)) → U1_GG(T22, T9, p1_in_gg(T22, g(T9)))
P1_IN_GG(f(T22), g(T9)) → P1_IN_GG(T22, g(T9))
P1_IN_GG(f(T45), g(T32)) → U2_GG(T45, T32, p1_in_gg(T45, g(T32)))
P1_IN_GA(f(T45), g(T32)) → U2_GA(T45, T32, p1_in_gg(T45, g(T32)))
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(T4, T4) → p1_out_gg(T4, T4)
p1_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, p1_in_gg(T45, g(T32)))
U2_gg(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_gg(f(T45), g(T32))
U1_gg(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_gg(f(T22), g(T9))
U1_ga(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_ga(f(T22), g(T9))
p1_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, p1_in_gg(T45, g(T32)))
U2_ga(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_ga(f(T45), g(T32))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
p1_in_gg(
x1,
x2) =
p1_in_gg(
x1,
x2)
g(
x1) =
g
p1_out_gg(
x1,
x2) =
p1_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x3)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
P1_IN_GA(
x1,
x2) =
P1_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
P1_IN_GG(
x1,
x2) =
P1_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x3)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x1,
x3)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_GG(f(T22), g(T9)) → P1_IN_GG(T22, g(T9))
The TRS R consists of the following rules:
p1_in_ga(T4, T4) → p1_out_ga(T4, T4)
p1_in_ga(f(T22), g(T9)) → U1_ga(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(T4, T4) → p1_out_gg(T4, T4)
p1_in_gg(f(T22), g(T9)) → U1_gg(T22, T9, p1_in_gg(T22, g(T9)))
p1_in_gg(f(T45), g(T32)) → U2_gg(T45, T32, p1_in_gg(T45, g(T32)))
U2_gg(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_gg(f(T45), g(T32))
U1_gg(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_gg(f(T22), g(T9))
U1_ga(T22, T9, p1_out_gg(T22, g(T9))) → p1_out_ga(f(T22), g(T9))
p1_in_ga(f(T45), g(T32)) → U2_ga(T45, T32, p1_in_gg(T45, g(T32)))
U2_ga(T45, T32, p1_out_gg(T45, g(T32))) → p1_out_ga(f(T45), g(T32))
The argument filtering Pi contains the following mapping:
p1_in_ga(
x1,
x2) =
p1_in_ga(
x1)
p1_out_ga(
x1,
x2) =
p1_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
p1_in_gg(
x1,
x2) =
p1_in_gg(
x1,
x2)
g(
x1) =
g
p1_out_gg(
x1,
x2) =
p1_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x3)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
P1_IN_GG(
x1,
x2) =
P1_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P1_IN_GG(f(T22), g(T9)) → P1_IN_GG(T22, g(T9))
R is empty.
The argument filtering Pi contains the following mapping:
f(
x1) =
f(
x1)
g(
x1) =
g
P1_IN_GG(
x1,
x2) =
P1_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P1_IN_GG(f(T22), g) → P1_IN_GG(T22, g)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P1_IN_GG(f(T22), g) → P1_IN_GG(T22, g)
The graph contains the following edges 1 > 1, 2 >= 2
(14) YES