(0) Obligation:
Clauses:
p(X, X).
p(f(X), g(Y)) :- ','(p(f(X), f(Z)), p(Z, g(Y))).
Queries:
p(g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,f) (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x4)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(f(X), g(Y)) → U1_GA(X, Y, p_in_ga(f(X), f(Z)))
P_IN_GA(f(X), g(Y)) → P_IN_GA(f(X), f(Z))
U1_GA(X, Y, p_out_ga(f(X), f(Z))) → U2_GA(X, Y, Z, p_in_gg(Z, g(Y)))
U1_GA(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
P_IN_GG(f(X), g(Y)) → U1_GG(X, Y, p_in_ga(f(X), f(Z)))
P_IN_GG(f(X), g(Y)) → P_IN_GA(f(X), f(Z))
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → U2_GG(X, Y, Z, p_in_gg(Z, g(Y)))
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
U2_GA(
x1,
x2,
x3,
x4) =
U2_GA(
x4)
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x3)
U2_GG(
x1,
x2,
x3,
x4) =
U2_GG(
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(f(X), g(Y)) → U1_GA(X, Y, p_in_ga(f(X), f(Z)))
P_IN_GA(f(X), g(Y)) → P_IN_GA(f(X), f(Z))
U1_GA(X, Y, p_out_ga(f(X), f(Z))) → U2_GA(X, Y, Z, p_in_gg(Z, g(Y)))
U1_GA(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
P_IN_GG(f(X), g(Y)) → U1_GG(X, Y, p_in_ga(f(X), f(Z)))
P_IN_GG(f(X), g(Y)) → P_IN_GA(f(X), f(Z))
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → U2_GG(X, Y, Z, p_in_gg(Z, g(Y)))
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
U2_GA(
x1,
x2,
x3,
x4) =
U2_GA(
x4)
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x3)
U2_GG(
x1,
x2,
x3,
x4) =
U2_GG(
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
P_IN_GG(f(X), g(Y)) → U1_GG(X, Y, p_in_ga(f(X), f(Z)))
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg
U1_gg(
x1,
x2,
x3) =
U1_gg(
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x4)
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
P_IN_GG(f(X), g(Y)) → U1_GG(X, Y, p_in_ga(f(X), f(Z)))
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
f(
x1) =
f(
x1)
g(
x1) =
g
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GG(p_out_ga(f(Z))) → P_IN_GG(Z, g)
P_IN_GG(f(X), g) → U1_GG(p_in_ga(f(X)))
The TRS R consists of the following rules:
p_in_ga(X) → p_out_ga(X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(11) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
U1_GG(p_out_ga(f(Z))) → P_IN_GG(Z, g)
P_IN_GG(f(X), g) → U1_GG(p_in_ga(f(X)))
Strictly oriented rules of the TRS R:
p_in_ga(X) → p_out_ga(X)
Used ordering: Polynomial interpretation [POLO]:
POL(P_IN_GG(x1, x2)) = 2 + x1 + x2
POL(U1_GG(x1)) = x1
POL(f(x1)) = 3 + x1
POL(g) = 0
POL(p_in_ga(x1)) = 1 + x1
POL(p_out_ga(x1)) = x1
(12) Obligation:
Q DP problem:
P is empty.
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE
(15) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,f) (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x1,
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(16) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x1,
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x4)
(17) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(f(X), g(Y)) → U1_GA(X, Y, p_in_ga(f(X), f(Z)))
P_IN_GA(f(X), g(Y)) → P_IN_GA(f(X), f(Z))
U1_GA(X, Y, p_out_ga(f(X), f(Z))) → U2_GA(X, Y, Z, p_in_gg(Z, g(Y)))
U1_GA(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
P_IN_GG(f(X), g(Y)) → U1_GG(X, Y, p_in_ga(f(X), f(Z)))
P_IN_GG(f(X), g(Y)) → P_IN_GA(f(X), f(Z))
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → U2_GG(X, Y, Z, p_in_gg(Z, g(Y)))
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x1,
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U2_GA(
x1,
x2,
x3,
x4) =
U2_GA(
x1,
x4)
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x3)
U2_GG(
x1,
x2,
x3,
x4) =
U2_GG(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GA(f(X), g(Y)) → U1_GA(X, Y, p_in_ga(f(X), f(Z)))
P_IN_GA(f(X), g(Y)) → P_IN_GA(f(X), f(Z))
U1_GA(X, Y, p_out_ga(f(X), f(Z))) → U2_GA(X, Y, Z, p_in_gg(Z, g(Y)))
U1_GA(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
P_IN_GG(f(X), g(Y)) → U1_GG(X, Y, p_in_ga(f(X), f(Z)))
P_IN_GG(f(X), g(Y)) → P_IN_GA(f(X), f(Z))
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → U2_GG(X, Y, Z, p_in_gg(Z, g(Y)))
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x1,
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U2_GA(
x1,
x2,
x3,
x4) =
U2_GA(
x1,
x4)
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x3)
U2_GG(
x1,
x2,
x3,
x4) =
U2_GG(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(19) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
P_IN_GG(f(X), g(Y)) → U1_GG(X, Y, p_in_ga(f(X), f(Z)))
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
p_in_ga(f(X), g(Y)) → U1_ga(X, Y, p_in_ga(f(X), f(Z)))
U1_ga(X, Y, p_out_ga(f(X), f(Z))) → U2_ga(X, Y, Z, p_in_gg(Z, g(Y)))
p_in_gg(X, X) → p_out_gg(X, X)
p_in_gg(f(X), g(Y)) → U1_gg(X, Y, p_in_ga(f(X), f(Z)))
U1_gg(X, Y, p_out_ga(f(X), f(Z))) → U2_gg(X, Y, Z, p_in_gg(Z, g(Y)))
U2_gg(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_gg(f(X), g(Y))
U2_ga(X, Y, Z, p_out_gg(Z, g(Y))) → p_out_ga(f(X), g(Y))
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U2_ga(
x1,
x2,
x3,
x4) =
U2_ga(
x1,
x4)
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
g(
x1) =
g
p_out_gg(
x1,
x2) =
p_out_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
U2_gg(
x1,
x2,
x3,
x4) =
U2_gg(
x1,
x4)
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(21) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_GG(X, Y, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g(Y))
P_IN_GG(f(X), g(Y)) → U1_GG(X, Y, p_in_ga(f(X), f(Z)))
The TRS R consists of the following rules:
p_in_ga(X, X) → p_out_ga(X, X)
The argument filtering Pi contains the following mapping:
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
f(
x1) =
f(
x1)
g(
x1) =
g
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(23) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_GG(X, p_out_ga(f(X), f(Z))) → P_IN_GG(Z, g)
P_IN_GG(f(X), g) → U1_GG(X, p_in_ga(f(X)))
The TRS R consists of the following rules:
p_in_ga(X) → p_out_ga(X, X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.