(0) Obligation:
Clauses:
half(0, 0).
half(s(0), 0).
half(s(s(X)), s(Y)) :- half(X, Y).
log(0, s(0)).
log(s(X), s(Y)) :- ','(half(s(X), Z), log(Z, Y)).
Queries:
log(g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
log_in: (b,f)
half_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
LOG_IN_GA(s(X), s(Y)) → HALF_IN_GA(s(X), Z)
HALF_IN_GA(s(s(X)), s(Y)) → U1_GA(X, Y, half_in_ga(X, Y))
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
U2_GA(X, Y, half_out_ga(s(X), Z)) → U3_GA(X, Y, log_in_ga(Z, Y))
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
LOG_IN_GA(
x1,
x2) =
LOG_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x3)
HALF_IN_GA(
x1,
x2) =
HALF_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x3)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
LOG_IN_GA(s(X), s(Y)) → HALF_IN_GA(s(X), Z)
HALF_IN_GA(s(s(X)), s(Y)) → U1_GA(X, Y, half_in_ga(X, Y))
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
U2_GA(X, Y, half_out_ga(s(X), Z)) → U3_GA(X, Y, log_in_ga(Z, Y))
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
LOG_IN_GA(
x1,
x2) =
LOG_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x3)
HALF_IN_GA(
x1,
x2) =
HALF_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x3)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
HALF_IN_GA(
x1,
x2) =
HALF_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
HALF_IN_GA(
x1,
x2) =
HALF_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HALF_IN_GA(s(s(X))) → HALF_IN_GA(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- HALF_IN_GA(s(s(X))) → HALF_IN_GA(X)
The graph contains the following edges 1 > 1
(13) TRUE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
LOG_IN_GA(
x1,
x2) =
LOG_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x3)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
The TRS R consists of the following rules:
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
half_in_ga(0, 0) → half_out_ga(0, 0)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
LOG_IN_GA(
x1,
x2) =
LOG_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x3)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GA(half_out_ga(Z)) → LOG_IN_GA(Z)
LOG_IN_GA(s(X)) → U2_GA(half_in_ga(s(X)))
The TRS R consists of the following rules:
half_in_ga(s(0)) → half_out_ga(0)
half_in_ga(s(s(X))) → U1_ga(half_in_ga(X))
U1_ga(half_out_ga(Y)) → half_out_ga(s(Y))
half_in_ga(0) → half_out_ga(0)
The set Q consists of the following terms:
half_in_ga(x0)
U1_ga(x0)
We have to consider all (P,Q,R)-chains.
(19) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
half_in_ga(s(0)) → half_out_ga(0)
half_in_ga(s(s(X))) → U1_ga(half_in_ga(X))
U1_ga(half_out_ga(Y)) → half_out_ga(s(Y))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(LOG_IN_GA(x1)) = x1
POL(U1_ga(x1)) = 3 + x1
POL(U2_GA(x1)) = x1
POL(half_in_ga(x1)) = x1
POL(half_out_ga(x1)) = x1
POL(s(x1)) = 2 + x1
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GA(half_out_ga(Z)) → LOG_IN_GA(Z)
LOG_IN_GA(s(X)) → U2_GA(half_in_ga(s(X)))
The TRS R consists of the following rules:
half_in_ga(0) → half_out_ga(0)
The set Q consists of the following terms:
half_in_ga(x0)
U1_ga(x0)
We have to consider all (P,Q,R)-chains.
(21) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(22) TRUE
(23) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
half_in_ga(s(0)) → half_out_ga(0)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 2
POL(LOG_IN_GA(x1)) = x1
POL(U1_ga(x1)) = 2·x1
POL(U2_GA(x1)) = x1
POL(half_in_ga(x1)) = x1
POL(half_out_ga(x1)) = x1
POL(s(x1)) = 2·x1
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GA(half_out_ga(Z)) → LOG_IN_GA(Z)
LOG_IN_GA(s(X)) → U2_GA(half_in_ga(s(X)))
The TRS R consists of the following rules:
half_in_ga(s(s(X))) → U1_ga(half_in_ga(X))
U1_ga(half_out_ga(Y)) → half_out_ga(s(Y))
half_in_ga(0) → half_out_ga(0)
The set Q consists of the following terms:
half_in_ga(x0)
U1_ga(x0)
We have to consider all (P,Q,R)-chains.
(25) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
log_in: (b,f)
half_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(26) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
(27) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
LOG_IN_GA(s(X), s(Y)) → HALF_IN_GA(s(X), Z)
HALF_IN_GA(s(s(X)), s(Y)) → U1_GA(X, Y, half_in_ga(X, Y))
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
U2_GA(X, Y, half_out_ga(s(X), Z)) → U3_GA(X, Y, log_in_ga(Z, Y))
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
LOG_IN_GA(
x1,
x2) =
LOG_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
HALF_IN_GA(
x1,
x2) =
HALF_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
LOG_IN_GA(s(X), s(Y)) → HALF_IN_GA(s(X), Z)
HALF_IN_GA(s(s(X)), s(Y)) → U1_GA(X, Y, half_in_ga(X, Y))
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
U2_GA(X, Y, half_out_ga(s(X), Z)) → U3_GA(X, Y, log_in_ga(Z, Y))
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
LOG_IN_GA(
x1,
x2) =
LOG_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
HALF_IN_GA(
x1,
x2) =
HALF_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(29) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.
(30) Complex Obligation (AND)
(31) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
HALF_IN_GA(
x1,
x2) =
HALF_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(32) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(33) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
HALF_IN_GA(s(s(X)), s(Y)) → HALF_IN_GA(X, Y)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
HALF_IN_GA(
x1,
x2) =
HALF_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(34) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HALF_IN_GA(s(s(X))) → HALF_IN_GA(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(36) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- HALF_IN_GA(s(s(X))) → HALF_IN_GA(X)
The graph contains the following edges 1 > 1
(37) TRUE
(38) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
The TRS R consists of the following rules:
log_in_ga(0, s(0)) → log_out_ga(0, s(0))
log_in_ga(s(X), s(Y)) → U2_ga(X, Y, half_in_ga(s(X), Z))
half_in_ga(0, 0) → half_out_ga(0, 0)
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
U2_ga(X, Y, half_out_ga(s(X), Z)) → U3_ga(X, Y, log_in_ga(Z, Y))
U3_ga(X, Y, log_out_ga(Z, Y)) → log_out_ga(s(X), s(Y))
The argument filtering Pi contains the following mapping:
log_in_ga(
x1,
x2) =
log_in_ga(
x1)
0 =
0
log_out_ga(
x1,
x2) =
log_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
U3_ga(
x1,
x2,
x3) =
U3_ga(
x1,
x3)
LOG_IN_GA(
x1,
x2) =
LOG_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(39) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(40) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U2_GA(X, Y, half_out_ga(s(X), Z)) → LOG_IN_GA(Z, Y)
LOG_IN_GA(s(X), s(Y)) → U2_GA(X, Y, half_in_ga(s(X), Z))
The TRS R consists of the following rules:
half_in_ga(s(0), 0) → half_out_ga(s(0), 0)
half_in_ga(s(s(X)), s(Y)) → U1_ga(X, Y, half_in_ga(X, Y))
U1_ga(X, Y, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
half_in_ga(0, 0) → half_out_ga(0, 0)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
half_in_ga(
x1,
x2) =
half_in_ga(
x1)
half_out_ga(
x1,
x2) =
half_out_ga(
x1,
x2)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
LOG_IN_GA(
x1,
x2) =
LOG_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(41) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GA(X, half_out_ga(s(X), Z)) → LOG_IN_GA(Z)
LOG_IN_GA(s(X)) → U2_GA(X, half_in_ga(s(X)))
The TRS R consists of the following rules:
half_in_ga(s(0)) → half_out_ga(s(0), 0)
half_in_ga(s(s(X))) → U1_ga(X, half_in_ga(X))
U1_ga(X, half_out_ga(X, Y)) → half_out_ga(s(s(X)), s(Y))
half_in_ga(0) → half_out_ga(0, 0)
The set Q consists of the following terms:
half_in_ga(x0)
U1_ga(x0, x1)
We have to consider all (P,Q,R)-chains.