(0) Obligation:

Clauses:

intlist([], []).
intlist(.(X, XS), .(s(X), YS)) :- intlist(XS, YS).
int(0, 0, .(0, [])).
int(0, s(Y), .(0, XS)) :- int(s(0), s(Y), XS).
int(s(X), 0, []).
int(s(X), s(Y), XS) :- ','(int(X, Y, ZS), intlist(ZS, XS)).

Queries:

int(g,g,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

intlist19([], []).
intlist19(.(T29, T30), .(s(T29), T32)) :- intlist19(T30, T32).
intlist44([]).
intlist67([], []).
intlist67(.(T75, T76), .(s(T75), X156)) :- intlist67(T76, X156).
int1(0, 0, .(0, [])).
int1(0, s(T19), .(0, T21)) :- int1(0, T19, X33).
int1(0, s(T19), .(0, T21)) :- ','(int1(0, T19, T22), intlist19(T22, T21)).
int1(s(T34), 0, []).
int1(s(0), s(0), .(s(0), T47)) :- intlist44(T47).
int1(s(0), s(s(T52)), T42) :- int1(s(0), s(T52), X98).
int1(s(0), s(s(T52)), T42) :- ','(int1(s(0), s(T52), T54), intlist19(.(0, T54), T42)).
int1(s(s(T62)), s(0), T42) :- intlist44(T42).
int1(s(s(T67)), s(s(T68)), T42) :- int1(T67, T68, X140).
int1(s(s(T67)), s(s(T68)), T42) :- ','(int1(T67, T68, T69), intlist67(T69, X141)).
int1(s(s(T67)), s(s(T68)), T42) :- ','(int1(T67, T68, T69), ','(intlist67(T69, T70), intlist19(T70, T42))).

Queries:

int1(g,g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
int1_in: (b,b,f)
intlist67_in: (f,f)
intlist19_in: (f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19), .(0, T21)) → U3_GGA(T19, T21, int1_in_gga(0, T19, X33))
INT1_IN_GGA(0, s(T19), .(0, T21)) → INT1_IN_GGA(0, T19, X33)
INT1_IN_GGA(0, s(T19), .(0, T21)) → U4_GGA(T19, T21, int1_in_gga(0, T19, T22))
INT1_IN_GGA(s(0), s(0), .(s(0), T47)) → U6_GGA(T47, intlist44_in_a(T47))
INT1_IN_GGA(s(0), s(0), .(s(0), T47)) → INTLIST44_IN_A(T47)
INT1_IN_GGA(s(0), s(s(T52)), T42) → U7_GGA(T52, T42, int1_in_gga(s(0), s(T52), X98))
INT1_IN_GGA(s(0), s(s(T52)), T42) → INT1_IN_GGA(s(0), s(T52), X98)
INT1_IN_GGA(s(0), s(s(T52)), T42) → U8_GGA(T52, T42, int1_in_gga(s(0), s(T52), T54))
INT1_IN_GGA(s(s(T62)), s(0), T42) → U10_GGA(T62, T42, intlist44_in_a(T42))
INT1_IN_GGA(s(s(T62)), s(0), T42) → INTLIST44_IN_A(T42)
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → U11_GGA(T67, T68, T42, int1_in_gga(T67, T68, X140))
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → INT1_IN_GGA(T67, T68, X140)
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → U12_GGA(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_GGA(T67, T68, T42, intlist67_in_aa(T69, X141))
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → INTLIST67_IN_AA(T69, X141)
INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → U2_AA(T75, T76, X156, intlist67_in_aa(T76, X156))
INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → INTLIST67_IN_AA(T76, X156)
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_GGA(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_GGA(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_GGA(T67, T68, T42, intlist19_in_aa(T70, T42))
U14_GGA(T67, T68, T42, intlist67_out_aa(T69, T70)) → INTLIST19_IN_AA(T70, T42)
INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → U1_AA(T29, T30, T32, intlist19_in_aa(T30, T32))
INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → INTLIST19_IN_AA(T30, T32)
U8_GGA(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_GGA(T52, T42, intlist19_in_aa(.(0, T54), T42))
U8_GGA(T52, T42, int1_out_gga(s(0), s(T52), T54)) → INTLIST19_IN_AA(.(0, T54), T42)
U4_GGA(T19, T21, int1_out_gga(0, T19, T22)) → U5_GGA(T19, T21, intlist19_in_aa(T22, T21))
U4_GGA(T19, T21, int1_out_gga(0, T19, T22)) → INTLIST19_IN_AA(T22, T21)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3)  =  U3_GGA(x3)
U4_GGA(x1, x2, x3)  =  U4_GGA(x3)
U6_GGA(x1, x2)  =  U6_GGA(x2)
INTLIST44_IN_A(x1)  =  INTLIST44_IN_A
U7_GGA(x1, x2, x3)  =  U7_GGA(x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x3)
U10_GGA(x1, x2, x3)  =  U10_GGA(x3)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x4)
U12_GGA(x1, x2, x3, x4)  =  U12_GGA(x4)
U13_GGA(x1, x2, x3, x4)  =  U13_GGA(x4)
INTLIST67_IN_AA(x1, x2)  =  INTLIST67_IN_AA
U2_AA(x1, x2, x3, x4)  =  U2_AA(x4)
U14_GGA(x1, x2, x3, x4)  =  U14_GGA(x4)
U15_GGA(x1, x2, x3, x4)  =  U15_GGA(x4)
INTLIST19_IN_AA(x1, x2)  =  INTLIST19_IN_AA
U1_AA(x1, x2, x3, x4)  =  U1_AA(x4)
U9_GGA(x1, x2, x3)  =  U9_GGA(x3)
U5_GGA(x1, x2, x3)  =  U5_GGA(x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19), .(0, T21)) → U3_GGA(T19, T21, int1_in_gga(0, T19, X33))
INT1_IN_GGA(0, s(T19), .(0, T21)) → INT1_IN_GGA(0, T19, X33)
INT1_IN_GGA(0, s(T19), .(0, T21)) → U4_GGA(T19, T21, int1_in_gga(0, T19, T22))
INT1_IN_GGA(s(0), s(0), .(s(0), T47)) → U6_GGA(T47, intlist44_in_a(T47))
INT1_IN_GGA(s(0), s(0), .(s(0), T47)) → INTLIST44_IN_A(T47)
INT1_IN_GGA(s(0), s(s(T52)), T42) → U7_GGA(T52, T42, int1_in_gga(s(0), s(T52), X98))
INT1_IN_GGA(s(0), s(s(T52)), T42) → INT1_IN_GGA(s(0), s(T52), X98)
INT1_IN_GGA(s(0), s(s(T52)), T42) → U8_GGA(T52, T42, int1_in_gga(s(0), s(T52), T54))
INT1_IN_GGA(s(s(T62)), s(0), T42) → U10_GGA(T62, T42, intlist44_in_a(T42))
INT1_IN_GGA(s(s(T62)), s(0), T42) → INTLIST44_IN_A(T42)
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → U11_GGA(T67, T68, T42, int1_in_gga(T67, T68, X140))
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → INT1_IN_GGA(T67, T68, X140)
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → U12_GGA(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_GGA(T67, T68, T42, intlist67_in_aa(T69, X141))
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → INTLIST67_IN_AA(T69, X141)
INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → U2_AA(T75, T76, X156, intlist67_in_aa(T76, X156))
INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → INTLIST67_IN_AA(T76, X156)
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_GGA(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_GGA(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_GGA(T67, T68, T42, intlist19_in_aa(T70, T42))
U14_GGA(T67, T68, T42, intlist67_out_aa(T69, T70)) → INTLIST19_IN_AA(T70, T42)
INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → U1_AA(T29, T30, T32, intlist19_in_aa(T30, T32))
INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → INTLIST19_IN_AA(T30, T32)
U8_GGA(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_GGA(T52, T42, intlist19_in_aa(.(0, T54), T42))
U8_GGA(T52, T42, int1_out_gga(s(0), s(T52), T54)) → INTLIST19_IN_AA(.(0, T54), T42)
U4_GGA(T19, T21, int1_out_gga(0, T19, T22)) → U5_GGA(T19, T21, intlist19_in_aa(T22, T21))
U4_GGA(T19, T21, int1_out_gga(0, T19, T22)) → INTLIST19_IN_AA(T22, T21)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3)  =  U3_GGA(x3)
U4_GGA(x1, x2, x3)  =  U4_GGA(x3)
U6_GGA(x1, x2)  =  U6_GGA(x2)
INTLIST44_IN_A(x1)  =  INTLIST44_IN_A
U7_GGA(x1, x2, x3)  =  U7_GGA(x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x3)
U10_GGA(x1, x2, x3)  =  U10_GGA(x3)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x4)
U12_GGA(x1, x2, x3, x4)  =  U12_GGA(x4)
U13_GGA(x1, x2, x3, x4)  =  U13_GGA(x4)
INTLIST67_IN_AA(x1, x2)  =  INTLIST67_IN_AA
U2_AA(x1, x2, x3, x4)  =  U2_AA(x4)
U14_GGA(x1, x2, x3, x4)  =  U14_GGA(x4)
U15_GGA(x1, x2, x3, x4)  =  U15_GGA(x4)
INTLIST19_IN_AA(x1, x2)  =  INTLIST19_IN_AA
U1_AA(x1, x2, x3, x4)  =  U1_AA(x4)
U9_GGA(x1, x2, x3)  =  U9_GGA(x3)
U5_GGA(x1, x2, x3)  =  U5_GGA(x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 21 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → INTLIST19_IN_AA(T30, T32)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
INTLIST19_IN_AA(x1, x2)  =  INTLIST19_IN_AA

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → INTLIST19_IN_AA(T30, T32)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x1, x2)
INTLIST19_IN_AA(x1, x2)  =  INTLIST19_IN_AA

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTLIST19_IN_AAINTLIST19_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = INTLIST19_IN_AA evaluates to t =INTLIST19_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from INTLIST19_IN_AA to INTLIST19_IN_AA.



(15) NO

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → INTLIST67_IN_AA(T76, X156)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
INTLIST67_IN_AA(x1, x2)  =  INTLIST67_IN_AA

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → INTLIST67_IN_AA(T76, X156)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x1, x2)
INTLIST67_IN_AA(x1, x2)  =  INTLIST67_IN_AA

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTLIST67_IN_AAINTLIST67_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = INTLIST67_IN_AA evaluates to t =INTLIST67_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from INTLIST67_IN_AA to INTLIST67_IN_AA.



(22) NO

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(0), s(s(T52)), T42) → INT1_IN_GGA(s(0), s(T52), X98)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(0), s(s(T52)), T42) → INT1_IN_GGA(s(0), s(T52), X98)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(0), s(s(T52))) → INT1_IN_GGA(s(0), s(T52))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INT1_IN_GGA(s(0), s(s(T52))) → INT1_IN_GGA(s(0), s(T52))
    The graph contains the following edges 1 >= 1, 2 > 2

(29) YES

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19), .(0, T21)) → INT1_IN_GGA(0, T19, X33)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19), .(0, T21)) → INT1_IN_GGA(0, T19, X33)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
.(x1, x2)  =  .(x1, x2)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19)) → INT1_IN_GGA(0, T19)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(35) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INT1_IN_GGA(0, s(T19)) → INT1_IN_GGA(0, T19)
    The graph contains the following edges 1 >= 1, 2 > 2

(36) YES

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → INT1_IN_GGA(T67, T68, X140)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x3)
U4_gga(x1, x2, x3)  =  U4_gga(x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x3)
U8_gga(x1, x2, x3)  =  U8_gga(x3)
U10_gga(x1, x2, x3)  =  U10_gga(x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x3)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(38) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(39) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → INT1_IN_GGA(T67, T68, X140)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(40) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(s(T67)), s(s(T68))) → INT1_IN_GGA(T67, T68)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(42) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INT1_IN_GGA(s(s(T67)), s(s(T68))) → INT1_IN_GGA(T67, T68)
    The graph contains the following edges 1 > 1, 2 > 2

(43) YES

(44) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
int1_in: (b,b,f)
intlist67_in: (f,f)
intlist19_in: (f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(45) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)

(46) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19), .(0, T21)) → U3_GGA(T19, T21, int1_in_gga(0, T19, X33))
INT1_IN_GGA(0, s(T19), .(0, T21)) → INT1_IN_GGA(0, T19, X33)
INT1_IN_GGA(0, s(T19), .(0, T21)) → U4_GGA(T19, T21, int1_in_gga(0, T19, T22))
INT1_IN_GGA(s(0), s(0), .(s(0), T47)) → U6_GGA(T47, intlist44_in_a(T47))
INT1_IN_GGA(s(0), s(0), .(s(0), T47)) → INTLIST44_IN_A(T47)
INT1_IN_GGA(s(0), s(s(T52)), T42) → U7_GGA(T52, T42, int1_in_gga(s(0), s(T52), X98))
INT1_IN_GGA(s(0), s(s(T52)), T42) → INT1_IN_GGA(s(0), s(T52), X98)
INT1_IN_GGA(s(0), s(s(T52)), T42) → U8_GGA(T52, T42, int1_in_gga(s(0), s(T52), T54))
INT1_IN_GGA(s(s(T62)), s(0), T42) → U10_GGA(T62, T42, intlist44_in_a(T42))
INT1_IN_GGA(s(s(T62)), s(0), T42) → INTLIST44_IN_A(T42)
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → U11_GGA(T67, T68, T42, int1_in_gga(T67, T68, X140))
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → INT1_IN_GGA(T67, T68, X140)
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → U12_GGA(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_GGA(T67, T68, T42, intlist67_in_aa(T69, X141))
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → INTLIST67_IN_AA(T69, X141)
INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → U2_AA(T75, T76, X156, intlist67_in_aa(T76, X156))
INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → INTLIST67_IN_AA(T76, X156)
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_GGA(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_GGA(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_GGA(T67, T68, T42, intlist19_in_aa(T70, T42))
U14_GGA(T67, T68, T42, intlist67_out_aa(T69, T70)) → INTLIST19_IN_AA(T70, T42)
INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → U1_AA(T29, T30, T32, intlist19_in_aa(T30, T32))
INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → INTLIST19_IN_AA(T30, T32)
U8_GGA(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_GGA(T52, T42, intlist19_in_aa(.(0, T54), T42))
U8_GGA(T52, T42, int1_out_gga(s(0), s(T52), T54)) → INTLIST19_IN_AA(.(0, T54), T42)
U4_GGA(T19, T21, int1_out_gga(0, T19, T22)) → U5_GGA(T19, T21, intlist19_in_aa(T22, T21))
U4_GGA(T19, T21, int1_out_gga(0, T19, T22)) → INTLIST19_IN_AA(T22, T21)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3)  =  U3_GGA(x1, x3)
U4_GGA(x1, x2, x3)  =  U4_GGA(x1, x3)
U6_GGA(x1, x2)  =  U6_GGA(x2)
INTLIST44_IN_A(x1)  =  INTLIST44_IN_A
U7_GGA(x1, x2, x3)  =  U7_GGA(x1, x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x1, x3)
U10_GGA(x1, x2, x3)  =  U10_GGA(x1, x3)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x1, x2, x4)
U12_GGA(x1, x2, x3, x4)  =  U12_GGA(x1, x2, x4)
U13_GGA(x1, x2, x3, x4)  =  U13_GGA(x1, x2, x4)
INTLIST67_IN_AA(x1, x2)  =  INTLIST67_IN_AA
U2_AA(x1, x2, x3, x4)  =  U2_AA(x4)
U14_GGA(x1, x2, x3, x4)  =  U14_GGA(x1, x2, x4)
U15_GGA(x1, x2, x3, x4)  =  U15_GGA(x1, x2, x4)
INTLIST19_IN_AA(x1, x2)  =  INTLIST19_IN_AA
U1_AA(x1, x2, x3, x4)  =  U1_AA(x4)
U9_GGA(x1, x2, x3)  =  U9_GGA(x1, x3)
U5_GGA(x1, x2, x3)  =  U5_GGA(x1, x3)

We have to consider all (P,R,Pi)-chains

(47) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19), .(0, T21)) → U3_GGA(T19, T21, int1_in_gga(0, T19, X33))
INT1_IN_GGA(0, s(T19), .(0, T21)) → INT1_IN_GGA(0, T19, X33)
INT1_IN_GGA(0, s(T19), .(0, T21)) → U4_GGA(T19, T21, int1_in_gga(0, T19, T22))
INT1_IN_GGA(s(0), s(0), .(s(0), T47)) → U6_GGA(T47, intlist44_in_a(T47))
INT1_IN_GGA(s(0), s(0), .(s(0), T47)) → INTLIST44_IN_A(T47)
INT1_IN_GGA(s(0), s(s(T52)), T42) → U7_GGA(T52, T42, int1_in_gga(s(0), s(T52), X98))
INT1_IN_GGA(s(0), s(s(T52)), T42) → INT1_IN_GGA(s(0), s(T52), X98)
INT1_IN_GGA(s(0), s(s(T52)), T42) → U8_GGA(T52, T42, int1_in_gga(s(0), s(T52), T54))
INT1_IN_GGA(s(s(T62)), s(0), T42) → U10_GGA(T62, T42, intlist44_in_a(T42))
INT1_IN_GGA(s(s(T62)), s(0), T42) → INTLIST44_IN_A(T42)
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → U11_GGA(T67, T68, T42, int1_in_gga(T67, T68, X140))
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → INT1_IN_GGA(T67, T68, X140)
INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → U12_GGA(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_GGA(T67, T68, T42, intlist67_in_aa(T69, X141))
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → INTLIST67_IN_AA(T69, X141)
INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → U2_AA(T75, T76, X156, intlist67_in_aa(T76, X156))
INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → INTLIST67_IN_AA(T76, X156)
U12_GGA(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_GGA(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_GGA(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_GGA(T67, T68, T42, intlist19_in_aa(T70, T42))
U14_GGA(T67, T68, T42, intlist67_out_aa(T69, T70)) → INTLIST19_IN_AA(T70, T42)
INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → U1_AA(T29, T30, T32, intlist19_in_aa(T30, T32))
INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → INTLIST19_IN_AA(T30, T32)
U8_GGA(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_GGA(T52, T42, intlist19_in_aa(.(0, T54), T42))
U8_GGA(T52, T42, int1_out_gga(s(0), s(T52), T54)) → INTLIST19_IN_AA(.(0, T54), T42)
U4_GGA(T19, T21, int1_out_gga(0, T19, T22)) → U5_GGA(T19, T21, intlist19_in_aa(T22, T21))
U4_GGA(T19, T21, int1_out_gga(0, T19, T22)) → INTLIST19_IN_AA(T22, T21)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3)  =  U3_GGA(x1, x3)
U4_GGA(x1, x2, x3)  =  U4_GGA(x1, x3)
U6_GGA(x1, x2)  =  U6_GGA(x2)
INTLIST44_IN_A(x1)  =  INTLIST44_IN_A
U7_GGA(x1, x2, x3)  =  U7_GGA(x1, x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x1, x3)
U10_GGA(x1, x2, x3)  =  U10_GGA(x1, x3)
U11_GGA(x1, x2, x3, x4)  =  U11_GGA(x1, x2, x4)
U12_GGA(x1, x2, x3, x4)  =  U12_GGA(x1, x2, x4)
U13_GGA(x1, x2, x3, x4)  =  U13_GGA(x1, x2, x4)
INTLIST67_IN_AA(x1, x2)  =  INTLIST67_IN_AA
U2_AA(x1, x2, x3, x4)  =  U2_AA(x4)
U14_GGA(x1, x2, x3, x4)  =  U14_GGA(x1, x2, x4)
U15_GGA(x1, x2, x3, x4)  =  U15_GGA(x1, x2, x4)
INTLIST19_IN_AA(x1, x2)  =  INTLIST19_IN_AA
U1_AA(x1, x2, x3, x4)  =  U1_AA(x4)
U9_GGA(x1, x2, x3)  =  U9_GGA(x1, x3)
U5_GGA(x1, x2, x3)  =  U5_GGA(x1, x3)

We have to consider all (P,R,Pi)-chains

(48) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 21 less nodes.

(49) Complex Obligation (AND)

(50) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → INTLIST19_IN_AA(T30, T32)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
INTLIST19_IN_AA(x1, x2)  =  INTLIST19_IN_AA

We have to consider all (P,R,Pi)-chains

(51) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(52) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INTLIST19_IN_AA(.(T29, T30), .(s(T29), T32)) → INTLIST19_IN_AA(T30, T32)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x1, x2)
INTLIST19_IN_AA(x1, x2)  =  INTLIST19_IN_AA

We have to consider all (P,R,Pi)-chains

(53) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTLIST19_IN_AAINTLIST19_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(55) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = INTLIST19_IN_AA evaluates to t =INTLIST19_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from INTLIST19_IN_AA to INTLIST19_IN_AA.



(56) NO

(57) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → INTLIST67_IN_AA(T76, X156)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
INTLIST67_IN_AA(x1, x2)  =  INTLIST67_IN_AA

We have to consider all (P,R,Pi)-chains

(58) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(59) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INTLIST67_IN_AA(.(T75, T76), .(s(T75), X156)) → INTLIST67_IN_AA(T76, X156)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x1, x2)
INTLIST67_IN_AA(x1, x2)  =  INTLIST67_IN_AA

We have to consider all (P,R,Pi)-chains

(60) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INTLIST67_IN_AAINTLIST67_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(62) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = INTLIST67_IN_AA evaluates to t =INTLIST67_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from INTLIST67_IN_AA to INTLIST67_IN_AA.



(63) NO

(64) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(0), s(s(T52)), T42) → INT1_IN_GGA(s(0), s(T52), X98)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(65) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(66) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(0), s(s(T52)), T42) → INT1_IN_GGA(s(0), s(T52), X98)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(67) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(0), s(s(T52))) → INT1_IN_GGA(s(0), s(T52))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(69) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INT1_IN_GGA(s(0), s(s(T52))) → INT1_IN_GGA(s(0), s(T52))
    The graph contains the following edges 1 >= 1, 2 > 2

(70) YES

(71) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19), .(0, T21)) → INT1_IN_GGA(0, T19, X33)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(72) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(73) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19), .(0, T21)) → INT1_IN_GGA(0, T19, X33)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
.(x1, x2)  =  .(x1, x2)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(74) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(0, s(T19)) → INT1_IN_GGA(0, T19)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(76) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INT1_IN_GGA(0, s(T19)) → INT1_IN_GGA(0, T19)
    The graph contains the following edges 1 >= 1, 2 > 2

(77) YES

(78) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → INT1_IN_GGA(T67, T68, X140)

The TRS R consists of the following rules:

int1_in_gga(0, 0, .(0, [])) → int1_out_gga(0, 0, .(0, []))
int1_in_gga(0, s(T19), .(0, T21)) → U3_gga(T19, T21, int1_in_gga(0, T19, X33))
int1_in_gga(0, s(T19), .(0, T21)) → U4_gga(T19, T21, int1_in_gga(0, T19, T22))
int1_in_gga(s(T34), 0, []) → int1_out_gga(s(T34), 0, [])
int1_in_gga(s(0), s(0), .(s(0), T47)) → U6_gga(T47, intlist44_in_a(T47))
intlist44_in_a([]) → intlist44_out_a([])
U6_gga(T47, intlist44_out_a(T47)) → int1_out_gga(s(0), s(0), .(s(0), T47))
int1_in_gga(s(0), s(s(T52)), T42) → U7_gga(T52, T42, int1_in_gga(s(0), s(T52), X98))
int1_in_gga(s(0), s(s(T52)), T42) → U8_gga(T52, T42, int1_in_gga(s(0), s(T52), T54))
int1_in_gga(s(s(T62)), s(0), T42) → U10_gga(T62, T42, intlist44_in_a(T42))
U10_gga(T62, T42, intlist44_out_a(T42)) → int1_out_gga(s(s(T62)), s(0), T42)
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U11_gga(T67, T68, T42, int1_in_gga(T67, T68, X140))
int1_in_gga(s(s(T67)), s(s(T68)), T42) → U12_gga(T67, T68, T42, int1_in_gga(T67, T68, T69))
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U13_gga(T67, T68, T42, intlist67_in_aa(T69, X141))
intlist67_in_aa([], []) → intlist67_out_aa([], [])
intlist67_in_aa(.(T75, T76), .(s(T75), X156)) → U2_aa(T75, T76, X156, intlist67_in_aa(T76, X156))
U2_aa(T75, T76, X156, intlist67_out_aa(T76, X156)) → intlist67_out_aa(.(T75, T76), .(s(T75), X156))
U13_gga(T67, T68, T42, intlist67_out_aa(T69, X141)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U12_gga(T67, T68, T42, int1_out_gga(T67, T68, T69)) → U14_gga(T67, T68, T42, intlist67_in_aa(T69, T70))
U14_gga(T67, T68, T42, intlist67_out_aa(T69, T70)) → U15_gga(T67, T68, T42, intlist19_in_aa(T70, T42))
intlist19_in_aa([], []) → intlist19_out_aa([], [])
intlist19_in_aa(.(T29, T30), .(s(T29), T32)) → U1_aa(T29, T30, T32, intlist19_in_aa(T30, T32))
U1_aa(T29, T30, T32, intlist19_out_aa(T30, T32)) → intlist19_out_aa(.(T29, T30), .(s(T29), T32))
U15_gga(T67, T68, T42, intlist19_out_aa(T70, T42)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U11_gga(T67, T68, T42, int1_out_gga(T67, T68, X140)) → int1_out_gga(s(s(T67)), s(s(T68)), T42)
U8_gga(T52, T42, int1_out_gga(s(0), s(T52), T54)) → U9_gga(T52, T42, intlist19_in_aa(.(0, T54), T42))
U9_gga(T52, T42, intlist19_out_aa(.(0, T54), T42)) → int1_out_gga(s(0), s(s(T52)), T42)
U7_gga(T52, T42, int1_out_gga(s(0), s(T52), X98)) → int1_out_gga(s(0), s(s(T52)), T42)
U4_gga(T19, T21, int1_out_gga(0, T19, T22)) → U5_gga(T19, T21, intlist19_in_aa(T22, T21))
U5_gga(T19, T21, intlist19_out_aa(T22, T21)) → int1_out_gga(0, s(T19), .(0, T21))
U3_gga(T19, T21, int1_out_gga(0, T19, X33)) → int1_out_gga(0, s(T19), .(0, T21))

The argument filtering Pi contains the following mapping:
int1_in_gga(x1, x2, x3)  =  int1_in_gga(x1, x2)
0  =  0
int1_out_gga(x1, x2, x3)  =  int1_out_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3)  =  U3_gga(x1, x3)
U4_gga(x1, x2, x3)  =  U4_gga(x1, x3)
U6_gga(x1, x2)  =  U6_gga(x2)
intlist44_in_a(x1)  =  intlist44_in_a
intlist44_out_a(x1)  =  intlist44_out_a(x1)
U7_gga(x1, x2, x3)  =  U7_gga(x1, x3)
U8_gga(x1, x2, x3)  =  U8_gga(x1, x3)
U10_gga(x1, x2, x3)  =  U10_gga(x1, x3)
U11_gga(x1, x2, x3, x4)  =  U11_gga(x1, x2, x4)
U12_gga(x1, x2, x3, x4)  =  U12_gga(x1, x2, x4)
U13_gga(x1, x2, x3, x4)  =  U13_gga(x1, x2, x4)
[]  =  []
.(x1, x2)  =  .(x1, x2)
intlist67_in_aa(x1, x2)  =  intlist67_in_aa
intlist67_out_aa(x1, x2)  =  intlist67_out_aa
U2_aa(x1, x2, x3, x4)  =  U2_aa(x4)
U14_gga(x1, x2, x3, x4)  =  U14_gga(x1, x2, x4)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
intlist19_in_aa(x1, x2)  =  intlist19_in_aa
intlist19_out_aa(x1, x2)  =  intlist19_out_aa
U1_aa(x1, x2, x3, x4)  =  U1_aa(x4)
U9_gga(x1, x2, x3)  =  U9_gga(x1, x3)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x3)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(79) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(80) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(s(T67)), s(s(T68)), T42) → INT1_IN_GGA(T67, T68, X140)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
INT1_IN_GGA(x1, x2, x3)  =  INT1_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(81) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INT1_IN_GGA(s(s(T67)), s(s(T68))) → INT1_IN_GGA(T67, T68)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(83) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INT1_IN_GGA(s(s(T67)), s(s(T68))) → INT1_IN_GGA(T67, T68)
    The graph contains the following edges 1 > 1, 2 > 2

(84) YES