(0) Obligation:
Clauses:
p(X) :- ','(q(f(Y)), p(Y)).
q(g(Y)).
Queries:
p(a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, q_in_g(f(Y)))
q_in_g(g(Y)) → q_out_g(g(Y))
U1_a(X, q_out_g(f(Y))) → U2_a(X, p_in_a(Y))
U2_a(X, p_out_a(Y)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
q_in_g(
x1) =
q_in_g(
x1)
f(
x1) =
f
g(
x1) =
g(
x1)
q_out_g(
x1) =
q_out_g
U2_a(
x1,
x2) =
U2_a(
x2)
p_out_a(
x1) =
p_out_a
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, q_in_g(f(Y)))
q_in_g(g(Y)) → q_out_g(g(Y))
U1_a(X, q_out_g(f(Y))) → U2_a(X, p_in_a(Y))
U2_a(X, p_out_a(Y)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
q_in_g(
x1) =
q_in_g(
x1)
f(
x1) =
f
g(
x1) =
g(
x1)
q_out_g(
x1) =
q_out_g
U2_a(
x1,
x2) =
U2_a(
x2)
p_out_a(
x1) =
p_out_a
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, q_in_g(f(Y)))
P_IN_A(X) → Q_IN_G(f(Y))
U1_A(X, q_out_g(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_g(f(Y))) → P_IN_A(Y)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, q_in_g(f(Y)))
q_in_g(g(Y)) → q_out_g(g(Y))
U1_a(X, q_out_g(f(Y))) → U2_a(X, p_in_a(Y))
U2_a(X, p_out_a(Y)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
q_in_g(
x1) =
q_in_g(
x1)
f(
x1) =
f
g(
x1) =
g(
x1)
q_out_g(
x1) =
q_out_g
U2_a(
x1,
x2) =
U2_a(
x2)
p_out_a(
x1) =
p_out_a
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U2_A(
x1,
x2) =
U2_A(
x2)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, q_in_g(f(Y)))
P_IN_A(X) → Q_IN_G(f(Y))
U1_A(X, q_out_g(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_g(f(Y))) → P_IN_A(Y)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, q_in_g(f(Y)))
q_in_g(g(Y)) → q_out_g(g(Y))
U1_a(X, q_out_g(f(Y))) → U2_a(X, p_in_a(Y))
U2_a(X, p_out_a(Y)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
q_in_g(
x1) =
q_in_g(
x1)
f(
x1) =
f
g(
x1) =
g(
x1)
q_out_g(
x1) =
q_out_g
U2_a(
x1,
x2) =
U2_a(
x2)
p_out_a(
x1) =
p_out_a
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U2_A(
x1,
x2) =
U2_A(
x2)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 0 SCCs with 4 less nodes.
(6) TRUE
(7) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, q_in_g(f(Y)))
q_in_g(g(Y)) → q_out_g(g(Y))
U1_a(X, q_out_g(f(Y))) → U2_a(X, p_in_a(Y))
U2_a(X, p_out_a(Y)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
q_in_g(
x1) =
q_in_g(
x1)
f(
x1) =
f
g(
x1) =
g(
x1)
q_out_g(
x1) =
q_out_g(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p_out_a(
x1) =
p_out_a
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(8) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, q_in_g(f(Y)))
q_in_g(g(Y)) → q_out_g(g(Y))
U1_a(X, q_out_g(f(Y))) → U2_a(X, p_in_a(Y))
U2_a(X, p_out_a(Y)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
q_in_g(
x1) =
q_in_g(
x1)
f(
x1) =
f
g(
x1) =
g(
x1)
q_out_g(
x1) =
q_out_g(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p_out_a(
x1) =
p_out_a
(9) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, q_in_g(f(Y)))
P_IN_A(X) → Q_IN_G(f(Y))
U1_A(X, q_out_g(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_g(f(Y))) → P_IN_A(Y)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, q_in_g(f(Y)))
q_in_g(g(Y)) → q_out_g(g(Y))
U1_a(X, q_out_g(f(Y))) → U2_a(X, p_in_a(Y))
U2_a(X, p_out_a(Y)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
q_in_g(
x1) =
q_in_g(
x1)
f(
x1) =
f
g(
x1) =
g(
x1)
q_out_g(
x1) =
q_out_g(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p_out_a(
x1) =
p_out_a
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U2_A(
x1,
x2) =
U2_A(
x2)
We have to consider all (P,R,Pi)-chains
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(X) → U1_A(X, q_in_g(f(Y)))
P_IN_A(X) → Q_IN_G(f(Y))
U1_A(X, q_out_g(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_g(f(Y))) → P_IN_A(Y)
The TRS R consists of the following rules:
p_in_a(X) → U1_a(X, q_in_g(f(Y)))
q_in_g(g(Y)) → q_out_g(g(Y))
U1_a(X, q_out_g(f(Y))) → U2_a(X, p_in_a(Y))
U2_a(X, p_out_a(Y)) → p_out_a(X)
The argument filtering Pi contains the following mapping:
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
q_in_g(
x1) =
q_in_g(
x1)
f(
x1) =
f
g(
x1) =
g(
x1)
q_out_g(
x1) =
q_out_g(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p_out_a(
x1) =
p_out_a
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U2_A(
x1,
x2) =
U2_A(
x2)
We have to consider all (P,R,Pi)-chains