(0) Obligation:
Clauses:
f(X) :- g(s(s(s(X)))).
f(s(X)) :- f(X).
g(s(s(s(s(X))))) :- f(X).
Queries:
f(g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (b)
g_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
The argument filtering Pi contains the following mapping:
f_in_g(
x1) =
f_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
g_in_g(
x1) =
g_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
f_out_g(
x1) =
f_out_g
g_out_g(
x1) =
g_out_g
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
The argument filtering Pi contains the following mapping:
f_in_g(
x1) =
f_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
g_in_g(
x1) =
g_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
f_out_g(
x1) =
f_out_g
g_out_g(
x1) =
g_out_g
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → U1_G(X, g_in_g(s(s(s(X)))))
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → U3_G(X, f_in_g(X))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → U2_G(X, f_in_g(X))
F_IN_G(s(X)) → F_IN_G(X)
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
The argument filtering Pi contains the following mapping:
f_in_g(
x1) =
f_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
g_in_g(
x1) =
g_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
f_out_g(
x1) =
f_out_g
g_out_g(
x1) =
g_out_g
F_IN_G(
x1) =
F_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
G_IN_G(
x1) =
G_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
U2_G(
x1,
x2) =
U2_G(
x2)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → U1_G(X, g_in_g(s(s(s(X)))))
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → U3_G(X, f_in_g(X))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → U2_G(X, f_in_g(X))
F_IN_G(s(X)) → F_IN_G(X)
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
The argument filtering Pi contains the following mapping:
f_in_g(
x1) =
f_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
g_in_g(
x1) =
g_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
f_out_g(
x1) =
f_out_g
g_out_g(
x1) =
g_out_g
F_IN_G(
x1) =
F_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
G_IN_G(
x1) =
G_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
U2_G(
x1,
x2) =
U2_G(
x2)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → F_IN_G(X)
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
The argument filtering Pi contains the following mapping:
f_in_g(
x1) =
f_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
g_in_g(
x1) =
g_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
f_out_g(
x1) =
f_out_g
g_out_g(
x1) =
g_out_g
F_IN_G(
x1) =
F_IN_G(
x1)
G_IN_G(
x1) =
G_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → F_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → F_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → F_IN_G(X)
Used ordering: Polynomial interpretation [POLO]:
POL(F_IN_G(x1)) = 7 + x1
POL(G_IN_G(x1)) = x1
POL(s(x1)) = 2 + x1
(12) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE
(15) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (b)
g_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
Pi is empty.
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(16) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
Pi is empty.
(17) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → U1_G(X, g_in_g(s(s(s(X)))))
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → U3_G(X, f_in_g(X))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → U2_G(X, f_in_g(X))
F_IN_G(s(X)) → F_IN_G(X)
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → U1_G(X, g_in_g(s(s(s(X)))))
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → U3_G(X, f_in_g(X))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → U2_G(X, f_in_g(X))
F_IN_G(s(X)) → F_IN_G(X)
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(19) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → F_IN_G(X)
The TRS R consists of the following rules:
f_in_g(X) → U1_g(X, g_in_g(s(s(s(X)))))
g_in_g(s(s(s(s(X))))) → U3_g(X, f_in_g(X))
f_in_g(s(X)) → U2_g(X, f_in_g(X))
U2_g(X, f_out_g(X)) → f_out_g(s(X))
U3_g(X, f_out_g(X)) → g_out_g(s(s(s(s(X)))))
U1_g(X, g_out_g(s(s(s(X))))) → f_out_g(X)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(21) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → F_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(23) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_G(X) → G_IN_G(s(s(s(X))))
G_IN_G(s(s(s(s(X))))) → F_IN_G(X)
F_IN_G(s(X)) → F_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.