(0) Obligation:
Clauses:
p(X) :- ','(q(f(Y)), p(Y)).
p(g(X)) :- p(X).
q(g(Y)).
Queries:
p(g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b) (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → U1_G(X, q_in_a(f(Y)))
P_IN_G(X) → Q_IN_A(f(Y))
U1_G(X, q_out_a(f(Y))) → U2_G(X, p_in_a(Y))
U1_G(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(X) → U1_A(X, q_in_a(f(Y)))
P_IN_A(X) → Q_IN_A(f(Y))
U1_A(X, q_out_a(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(g(X)) → U3_A(X, p_in_a(X))
P_IN_A(g(X)) → P_IN_A(X)
P_IN_G(g(X)) → U3_G(X, p_in_g(X))
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
Q_IN_A(
x1) =
Q_IN_A
U2_G(
x1,
x2) =
U2_G(
x2)
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
U2_A(
x1,
x2) =
U2_A(
x2)
U3_A(
x1,
x2) =
U3_A(
x2)
U3_G(
x1,
x2) =
U3_G(
x2)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → U1_G(X, q_in_a(f(Y)))
P_IN_G(X) → Q_IN_A(f(Y))
U1_G(X, q_out_a(f(Y))) → U2_G(X, p_in_a(Y))
U1_G(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(X) → U1_A(X, q_in_a(f(Y)))
P_IN_A(X) → Q_IN_A(f(Y))
U1_A(X, q_out_a(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(g(X)) → U3_A(X, p_in_a(X))
P_IN_A(g(X)) → P_IN_A(X)
P_IN_G(g(X)) → U3_G(X, p_in_g(X))
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
Q_IN_A(
x1) =
Q_IN_A
U2_G(
x1,
x2) =
U2_G(
x2)
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
U2_A(
x1,
x2) =
U2_A(
x2)
U3_A(
x1,
x2) =
U3_A(
x2)
U3_G(
x1,
x2) =
U3_G(
x2)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 10 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(g(X)) → P_IN_A(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
P_IN_A(
x1) =
P_IN_A
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(g(X)) → P_IN_A(X)
R is empty.
The argument filtering Pi contains the following mapping:
g(
x1) =
g(
x1)
P_IN_A(
x1) =
P_IN_A
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_A → P_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P_IN_A evaluates to t =
P_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P_IN_A to P_IN_A.
(13) FALSE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P_IN_G(g(X)) → P_IN_G(X)
The graph contains the following edges 1 > 1
(20) TRUE
(21) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b) (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g(
x1)
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(22) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g(
x1)
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
(23) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → U1_G(X, q_in_a(f(Y)))
P_IN_G(X) → Q_IN_A(f(Y))
U1_G(X, q_out_a(f(Y))) → U2_G(X, p_in_a(Y))
U1_G(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(X) → U1_A(X, q_in_a(f(Y)))
P_IN_A(X) → Q_IN_A(f(Y))
U1_A(X, q_out_a(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(g(X)) → U3_A(X, p_in_a(X))
P_IN_A(g(X)) → P_IN_A(X)
P_IN_G(g(X)) → U3_G(X, p_in_g(X))
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g(
x1)
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
Q_IN_A(
x1) =
Q_IN_A
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
U2_A(
x1,
x2) =
U2_A(
x2)
U3_A(
x1,
x2) =
U3_A(
x2)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(24) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → U1_G(X, q_in_a(f(Y)))
P_IN_G(X) → Q_IN_A(f(Y))
U1_G(X, q_out_a(f(Y))) → U2_G(X, p_in_a(Y))
U1_G(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(X) → U1_A(X, q_in_a(f(Y)))
P_IN_A(X) → Q_IN_A(f(Y))
U1_A(X, q_out_a(f(Y))) → U2_A(X, p_in_a(Y))
U1_A(X, q_out_a(f(Y))) → P_IN_A(Y)
P_IN_A(g(X)) → U3_A(X, p_in_a(X))
P_IN_A(g(X)) → P_IN_A(X)
P_IN_G(g(X)) → U3_G(X, p_in_g(X))
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g(
x1)
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
Q_IN_A(
x1) =
Q_IN_A
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
P_IN_A(
x1) =
P_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
U2_A(
x1,
x2) =
U2_A(
x2)
U3_A(
x1,
x2) =
U3_A(
x2)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 10 less nodes.
(26) Complex Obligation (AND)
(27) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(g(X)) → P_IN_A(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g(
x1)
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
P_IN_A(
x1) =
P_IN_A
We have to consider all (P,R,Pi)-chains
(28) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(29) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_A(g(X)) → P_IN_A(X)
R is empty.
The argument filtering Pi contains the following mapping:
g(
x1) =
g(
x1)
P_IN_A(
x1) =
P_IN_A
We have to consider all (P,R,Pi)-chains
(30) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_A → P_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(32) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P_IN_A evaluates to t =
P_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P_IN_A to P_IN_A.
(33) FALSE
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
The TRS R consists of the following rules:
p_in_g(X) → U1_g(X, q_in_a(f(Y)))
q_in_a(g(Y)) → q_out_a(g(Y))
U1_g(X, q_out_a(f(Y))) → U2_g(X, p_in_a(Y))
p_in_a(X) → U1_a(X, q_in_a(f(Y)))
U1_a(X, q_out_a(f(Y))) → U2_a(X, p_in_a(Y))
p_in_a(g(X)) → U3_a(X, p_in_a(X))
U3_a(X, p_out_a(X)) → p_out_a(g(X))
U2_a(X, p_out_a(Y)) → p_out_a(X)
U2_g(X, p_out_a(Y)) → p_out_g(X)
p_in_g(g(X)) → U3_g(X, p_in_g(X))
U3_g(X, p_out_g(X)) → p_out_g(g(X))
The argument filtering Pi contains the following mapping:
p_in_g(
x1) =
p_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_a(
x1) =
p_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
U3_a(
x1,
x2) =
U3_a(
x2)
p_out_a(
x1) =
p_out_a
p_out_g(
x1) =
p_out_g(
x1)
g(
x1) =
g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(35) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(37) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(g(X)) → P_IN_G(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(39) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P_IN_G(g(X)) → P_IN_G(X)
The graph contains the following edges 1 > 1
(40) TRUE