(0) Obligation:

Clauses:

p(0, 0).
p(s(X), X).
le(0, Y, true).
le(s(X), 0, false).
le(s(X), s(Y), B) :- le(X, Y, B).
minus(X, Y, Z) :- ','(le(X, Y, B), if(B, X, Y, Z)).
if(true, X, Y, 0).
if(false, X, Y, s(Z)) :- ','(p(X, X1), minus(X1, Y, Z)).

Queries:

minus(g,a,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

minus54(s(T89)) :- ','(lec58(false), minus54(T89)).
minus26(0, s(T77)) :- ','(lec29(0, false), minus54(T77)).
minus26(s(T96), s(T77)) :- ','(lec29(s(T96), false), minus26(T96, T77)).
le84(s(T128), s(T130), X280) :- le84(T128, T130, X280).
minus1(s(T46), 0, s(T40)) :- minus26(T46, T40).
minus1(s(T103), s(T105), T106) :- le84(T103, T105, X249).
minus1(s(T165), s(T157), s(T156)) :- ','(lec84(T165, T157, false), minus1(T165, s(T157), T156)).

Clauses:

minusc54(0) :- lec58(true).
minusc54(s(T89)) :- ','(lec58(false), minusc54(T89)).
minusc26(T70, 0) :- lec29(T70, true).
minusc26(0, s(T77)) :- ','(lec29(0, false), minusc54(T77)).
minusc26(s(T96), s(T77)) :- ','(lec29(s(T96), false), minusc26(T96, T77)).
lec84(0, T118, true).
lec84(s(T123), 0, false).
lec84(s(T128), s(T130), X280) :- lec84(T128, T130, X280).
minusc1(0, T25, 0).
minusc1(s(T46), 0, s(T40)) :- minusc26(T46, T40).
minusc1(s(T145), s(T146), 0) :- lec84(T145, T146, true).
minusc1(s(T165), s(T157), s(T156)) :- ','(lec84(T165, T157, false), minusc1(T165, s(T157), T156)).
lec29(0, true).
lec29(s(T62), false).
lec58(true).

Afs:

minus1(x1, x2, x3)  =  minus1(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minus1_in: (b,f,f)
minus26_in: (b,f)
minus54_in: (f)
le84_in: (b,f,f)
lec84_in: (b,f,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

MINUS1_IN_GAA(s(T46), 0, s(T40)) → U8_GAA(T46, T40, minus26_in_ga(T46, T40))
MINUS1_IN_GAA(s(T46), 0, s(T40)) → MINUS26_IN_GA(T46, T40)
MINUS26_IN_GA(0, s(T77)) → U3_GA(T77, lec29_in_gg(0, false))
U3_GA(T77, lec29_out_gg(0, false)) → U4_GA(T77, minus54_in_a(T77))
U3_GA(T77, lec29_out_gg(0, false)) → MINUS54_IN_A(T77)
MINUS54_IN_A(s(T89)) → U1_A(T89, lec58_in_g(false))
U1_A(T89, lec58_out_g(false)) → U2_A(T89, minus54_in_a(T89))
U1_A(T89, lec58_out_g(false)) → MINUS54_IN_A(T89)
MINUS26_IN_GA(s(T96), s(T77)) → U5_GA(T96, T77, lec29_in_gg(s(T96), false))
U5_GA(T96, T77, lec29_out_gg(s(T96), false)) → U6_GA(T96, T77, minus26_in_ga(T96, T77))
U5_GA(T96, T77, lec29_out_gg(s(T96), false)) → MINUS26_IN_GA(T96, T77)
MINUS1_IN_GAA(s(T103), s(T105), T106) → U9_GAA(T103, T105, T106, le84_in_gaa(T103, T105, X249))
MINUS1_IN_GAA(s(T103), s(T105), T106) → LE84_IN_GAA(T103, T105, X249)
LE84_IN_GAA(s(T128), s(T130), X280) → U7_GAA(T128, T130, X280, le84_in_gaa(T128, T130, X280))
LE84_IN_GAA(s(T128), s(T130), X280) → LE84_IN_GAA(T128, T130, X280)
MINUS1_IN_GAA(s(T165), s(T157), s(T156)) → U10_GAA(T165, T157, T156, lec84_in_gag(T165, T157, false))
U10_GAA(T165, T157, T156, lec84_out_gag(T165, T157, false)) → U11_GAA(T165, T157, T156, minus1_in_gaa(T165, s(T157), T156))
U10_GAA(T165, T157, T156, lec84_out_gag(T165, T157, false)) → MINUS1_IN_GAA(T165, s(T157), T156)

The TRS R consists of the following rules:

lec29_in_gg(0, true) → lec29_out_gg(0, true)
lec29_in_gg(s(T62), false) → lec29_out_gg(s(T62), false)
lec58_in_g(true) → lec58_out_g(true)
lec84_in_gag(0, T118, true) → lec84_out_gag(0, T118, true)
lec84_in_gag(s(T123), 0, false) → lec84_out_gag(s(T123), 0, false)
lec84_in_gag(s(T128), s(T130), X280) → U21_gag(T128, T130, X280, lec84_in_gag(T128, T130, X280))
U21_gag(T128, T130, X280, lec84_out_gag(T128, T130, X280)) → lec84_out_gag(s(T128), s(T130), X280)

The argument filtering Pi contains the following mapping:
minus1_in_gaa(x1, x2, x3)  =  minus1_in_gaa(x1)
s(x1)  =  s(x1)
minus26_in_ga(x1, x2)  =  minus26_in_ga(x1)
0  =  0
lec29_in_gg(x1, x2)  =  lec29_in_gg(x1, x2)
true  =  true
lec29_out_gg(x1, x2)  =  lec29_out_gg(x1, x2)
false  =  false
minus54_in_a(x1)  =  minus54_in_a
lec58_in_g(x1)  =  lec58_in_g(x1)
lec58_out_g(x1)  =  lec58_out_g(x1)
le84_in_gaa(x1, x2, x3)  =  le84_in_gaa(x1)
lec84_in_gag(x1, x2, x3)  =  lec84_in_gag(x1, x3)
lec84_out_gag(x1, x2, x3)  =  lec84_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUS1_IN_GAA(x1, x2, x3)  =  MINUS1_IN_GAA(x1)
U8_GAA(x1, x2, x3)  =  U8_GAA(x1, x3)
MINUS26_IN_GA(x1, x2)  =  MINUS26_IN_GA(x1)
U3_GA(x1, x2)  =  U3_GA(x2)
U4_GA(x1, x2)  =  U4_GA(x2)
MINUS54_IN_A(x1)  =  MINUS54_IN_A
U1_A(x1, x2)  =  U1_A(x2)
U2_A(x1, x2)  =  U2_A(x2)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U6_GA(x1, x2, x3)  =  U6_GA(x1, x3)
U9_GAA(x1, x2, x3, x4)  =  U9_GAA(x1, x4)
LE84_IN_GAA(x1, x2, x3)  =  LE84_IN_GAA(x1)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x4)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)
U11_GAA(x1, x2, x3, x4)  =  U11_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS1_IN_GAA(s(T46), 0, s(T40)) → U8_GAA(T46, T40, minus26_in_ga(T46, T40))
MINUS1_IN_GAA(s(T46), 0, s(T40)) → MINUS26_IN_GA(T46, T40)
MINUS26_IN_GA(0, s(T77)) → U3_GA(T77, lec29_in_gg(0, false))
U3_GA(T77, lec29_out_gg(0, false)) → U4_GA(T77, minus54_in_a(T77))
U3_GA(T77, lec29_out_gg(0, false)) → MINUS54_IN_A(T77)
MINUS54_IN_A(s(T89)) → U1_A(T89, lec58_in_g(false))
U1_A(T89, lec58_out_g(false)) → U2_A(T89, minus54_in_a(T89))
U1_A(T89, lec58_out_g(false)) → MINUS54_IN_A(T89)
MINUS26_IN_GA(s(T96), s(T77)) → U5_GA(T96, T77, lec29_in_gg(s(T96), false))
U5_GA(T96, T77, lec29_out_gg(s(T96), false)) → U6_GA(T96, T77, minus26_in_ga(T96, T77))
U5_GA(T96, T77, lec29_out_gg(s(T96), false)) → MINUS26_IN_GA(T96, T77)
MINUS1_IN_GAA(s(T103), s(T105), T106) → U9_GAA(T103, T105, T106, le84_in_gaa(T103, T105, X249))
MINUS1_IN_GAA(s(T103), s(T105), T106) → LE84_IN_GAA(T103, T105, X249)
LE84_IN_GAA(s(T128), s(T130), X280) → U7_GAA(T128, T130, X280, le84_in_gaa(T128, T130, X280))
LE84_IN_GAA(s(T128), s(T130), X280) → LE84_IN_GAA(T128, T130, X280)
MINUS1_IN_GAA(s(T165), s(T157), s(T156)) → U10_GAA(T165, T157, T156, lec84_in_gag(T165, T157, false))
U10_GAA(T165, T157, T156, lec84_out_gag(T165, T157, false)) → U11_GAA(T165, T157, T156, minus1_in_gaa(T165, s(T157), T156))
U10_GAA(T165, T157, T156, lec84_out_gag(T165, T157, false)) → MINUS1_IN_GAA(T165, s(T157), T156)

The TRS R consists of the following rules:

lec29_in_gg(0, true) → lec29_out_gg(0, true)
lec29_in_gg(s(T62), false) → lec29_out_gg(s(T62), false)
lec58_in_g(true) → lec58_out_g(true)
lec84_in_gag(0, T118, true) → lec84_out_gag(0, T118, true)
lec84_in_gag(s(T123), 0, false) → lec84_out_gag(s(T123), 0, false)
lec84_in_gag(s(T128), s(T130), X280) → U21_gag(T128, T130, X280, lec84_in_gag(T128, T130, X280))
U21_gag(T128, T130, X280, lec84_out_gag(T128, T130, X280)) → lec84_out_gag(s(T128), s(T130), X280)

The argument filtering Pi contains the following mapping:
minus1_in_gaa(x1, x2, x3)  =  minus1_in_gaa(x1)
s(x1)  =  s(x1)
minus26_in_ga(x1, x2)  =  minus26_in_ga(x1)
0  =  0
lec29_in_gg(x1, x2)  =  lec29_in_gg(x1, x2)
true  =  true
lec29_out_gg(x1, x2)  =  lec29_out_gg(x1, x2)
false  =  false
minus54_in_a(x1)  =  minus54_in_a
lec58_in_g(x1)  =  lec58_in_g(x1)
lec58_out_g(x1)  =  lec58_out_g(x1)
le84_in_gaa(x1, x2, x3)  =  le84_in_gaa(x1)
lec84_in_gag(x1, x2, x3)  =  lec84_in_gag(x1, x3)
lec84_out_gag(x1, x2, x3)  =  lec84_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUS1_IN_GAA(x1, x2, x3)  =  MINUS1_IN_GAA(x1)
U8_GAA(x1, x2, x3)  =  U8_GAA(x1, x3)
MINUS26_IN_GA(x1, x2)  =  MINUS26_IN_GA(x1)
U3_GA(x1, x2)  =  U3_GA(x2)
U4_GA(x1, x2)  =  U4_GA(x2)
MINUS54_IN_A(x1)  =  MINUS54_IN_A
U1_A(x1, x2)  =  U1_A(x2)
U2_A(x1, x2)  =  U2_A(x2)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U6_GA(x1, x2, x3)  =  U6_GA(x1, x3)
U9_GAA(x1, x2, x3, x4)  =  U9_GAA(x1, x4)
LE84_IN_GAA(x1, x2, x3)  =  LE84_IN_GAA(x1)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x4)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)
U11_GAA(x1, x2, x3, x4)  =  U11_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 13 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE84_IN_GAA(s(T128), s(T130), X280) → LE84_IN_GAA(T128, T130, X280)

The TRS R consists of the following rules:

lec29_in_gg(0, true) → lec29_out_gg(0, true)
lec29_in_gg(s(T62), false) → lec29_out_gg(s(T62), false)
lec58_in_g(true) → lec58_out_g(true)
lec84_in_gag(0, T118, true) → lec84_out_gag(0, T118, true)
lec84_in_gag(s(T123), 0, false) → lec84_out_gag(s(T123), 0, false)
lec84_in_gag(s(T128), s(T130), X280) → U21_gag(T128, T130, X280, lec84_in_gag(T128, T130, X280))
U21_gag(T128, T130, X280, lec84_out_gag(T128, T130, X280)) → lec84_out_gag(s(T128), s(T130), X280)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lec29_in_gg(x1, x2)  =  lec29_in_gg(x1, x2)
true  =  true
lec29_out_gg(x1, x2)  =  lec29_out_gg(x1, x2)
false  =  false
lec58_in_g(x1)  =  lec58_in_g(x1)
lec58_out_g(x1)  =  lec58_out_g(x1)
lec84_in_gag(x1, x2, x3)  =  lec84_in_gag(x1, x3)
lec84_out_gag(x1, x2, x3)  =  lec84_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
LE84_IN_GAA(x1, x2, x3)  =  LE84_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE84_IN_GAA(s(T128), s(T130), X280) → LE84_IN_GAA(T128, T130, X280)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LE84_IN_GAA(x1, x2, x3)  =  LE84_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE84_IN_GAA(s(T128)) → LE84_IN_GAA(T128)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE84_IN_GAA(s(T128)) → LE84_IN_GAA(T128)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS1_IN_GAA(s(T165), s(T157), s(T156)) → U10_GAA(T165, T157, T156, lec84_in_gag(T165, T157, false))
U10_GAA(T165, T157, T156, lec84_out_gag(T165, T157, false)) → MINUS1_IN_GAA(T165, s(T157), T156)

The TRS R consists of the following rules:

lec29_in_gg(0, true) → lec29_out_gg(0, true)
lec29_in_gg(s(T62), false) → lec29_out_gg(s(T62), false)
lec58_in_g(true) → lec58_out_g(true)
lec84_in_gag(0, T118, true) → lec84_out_gag(0, T118, true)
lec84_in_gag(s(T123), 0, false) → lec84_out_gag(s(T123), 0, false)
lec84_in_gag(s(T128), s(T130), X280) → U21_gag(T128, T130, X280, lec84_in_gag(T128, T130, X280))
U21_gag(T128, T130, X280, lec84_out_gag(T128, T130, X280)) → lec84_out_gag(s(T128), s(T130), X280)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lec29_in_gg(x1, x2)  =  lec29_in_gg(x1, x2)
true  =  true
lec29_out_gg(x1, x2)  =  lec29_out_gg(x1, x2)
false  =  false
lec58_in_g(x1)  =  lec58_in_g(x1)
lec58_out_g(x1)  =  lec58_out_g(x1)
lec84_in_gag(x1, x2, x3)  =  lec84_in_gag(x1, x3)
lec84_out_gag(x1, x2, x3)  =  lec84_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUS1_IN_GAA(x1, x2, x3)  =  MINUS1_IN_GAA(x1)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS1_IN_GAA(s(T165), s(T157), s(T156)) → U10_GAA(T165, T157, T156, lec84_in_gag(T165, T157, false))
U10_GAA(T165, T157, T156, lec84_out_gag(T165, T157, false)) → MINUS1_IN_GAA(T165, s(T157), T156)

The TRS R consists of the following rules:

lec84_in_gag(s(T123), 0, false) → lec84_out_gag(s(T123), 0, false)
lec84_in_gag(s(T128), s(T130), X280) → U21_gag(T128, T130, X280, lec84_in_gag(T128, T130, X280))
U21_gag(T128, T130, X280, lec84_out_gag(T128, T130, X280)) → lec84_out_gag(s(T128), s(T130), X280)
lec84_in_gag(0, T118, true) → lec84_out_gag(0, T118, true)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
true  =  true
false  =  false
lec84_in_gag(x1, x2, x3)  =  lec84_in_gag(x1, x3)
lec84_out_gag(x1, x2, x3)  =  lec84_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUS1_IN_GAA(x1, x2, x3)  =  MINUS1_IN_GAA(x1)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS1_IN_GAA(s(T165)) → U10_GAA(T165, lec84_in_gag(T165, false))
U10_GAA(T165, lec84_out_gag(T165, false)) → MINUS1_IN_GAA(T165)

The TRS R consists of the following rules:

lec84_in_gag(s(T123), false) → lec84_out_gag(s(T123), false)
lec84_in_gag(s(T128), X280) → U21_gag(T128, X280, lec84_in_gag(T128, X280))
U21_gag(T128, X280, lec84_out_gag(T128, X280)) → lec84_out_gag(s(T128), X280)
lec84_in_gag(0, true) → lec84_out_gag(0, true)

The set Q consists of the following terms:

lec84_in_gag(x0, x1)
U21_gag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U10_GAA(T165, lec84_out_gag(T165, false)) → MINUS1_IN_GAA(T165)
    The graph contains the following edges 1 >= 1, 2 > 1

  • MINUS1_IN_GAA(s(T165)) → U10_GAA(T165, lec84_in_gag(T165, false))
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS26_IN_GA(s(T96), s(T77)) → U5_GA(T96, T77, lec29_in_gg(s(T96), false))
U5_GA(T96, T77, lec29_out_gg(s(T96), false)) → MINUS26_IN_GA(T96, T77)

The TRS R consists of the following rules:

lec29_in_gg(0, true) → lec29_out_gg(0, true)
lec29_in_gg(s(T62), false) → lec29_out_gg(s(T62), false)
lec58_in_g(true) → lec58_out_g(true)
lec84_in_gag(0, T118, true) → lec84_out_gag(0, T118, true)
lec84_in_gag(s(T123), 0, false) → lec84_out_gag(s(T123), 0, false)
lec84_in_gag(s(T128), s(T130), X280) → U21_gag(T128, T130, X280, lec84_in_gag(T128, T130, X280))
U21_gag(T128, T130, X280, lec84_out_gag(T128, T130, X280)) → lec84_out_gag(s(T128), s(T130), X280)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lec29_in_gg(x1, x2)  =  lec29_in_gg(x1, x2)
true  =  true
lec29_out_gg(x1, x2)  =  lec29_out_gg(x1, x2)
false  =  false
lec58_in_g(x1)  =  lec58_in_g(x1)
lec58_out_g(x1)  =  lec58_out_g(x1)
lec84_in_gag(x1, x2, x3)  =  lec84_in_gag(x1, x3)
lec84_out_gag(x1, x2, x3)  =  lec84_out_gag(x1, x3)
U21_gag(x1, x2, x3, x4)  =  U21_gag(x1, x3, x4)
MINUS26_IN_GA(x1, x2)  =  MINUS26_IN_GA(x1)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS26_IN_GA(s(T96), s(T77)) → U5_GA(T96, T77, lec29_in_gg(s(T96), false))
U5_GA(T96, T77, lec29_out_gg(s(T96), false)) → MINUS26_IN_GA(T96, T77)

The TRS R consists of the following rules:

lec29_in_gg(s(T62), false) → lec29_out_gg(s(T62), false)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lec29_in_gg(x1, x2)  =  lec29_in_gg(x1, x2)
lec29_out_gg(x1, x2)  =  lec29_out_gg(x1, x2)
false  =  false
MINUS26_IN_GA(x1, x2)  =  MINUS26_IN_GA(x1)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS26_IN_GA(s(T96)) → U5_GA(T96, lec29_in_gg(s(T96), false))
U5_GA(T96, lec29_out_gg(s(T96), false)) → MINUS26_IN_GA(T96)

The TRS R consists of the following rules:

lec29_in_gg(s(T62), false) → lec29_out_gg(s(T62), false)

The set Q consists of the following terms:

lec29_in_gg(x0, x1)

We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U5_GA(T96, lec29_out_gg(s(T96), false)) → MINUS26_IN_GA(T96)
    The graph contains the following edges 1 >= 1, 2 > 1

  • MINUS26_IN_GA(s(T96)) → U5_GA(T96, lec29_in_gg(s(T96), false))
    The graph contains the following edges 1 > 1

(27) YES