(0) Obligation:

Clauses:

le(0, Y, true).
le(s(X), 0, false).
le(s(X), s(Y), B) :- le(X, Y, B).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
div(X, s(Y), Z) :- ','(le(s(Y), X, B), if(B, X, s(Y), Z)).
if(false, X, s(Y), 0).
if(true, X, s(Y), s(Z)) :- ','(minus(X, Y, U), div(U, s(Y), Z)).

Queries:

div(g,g,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

le20(0, T38, true).
le20(s(T43), 0, false).
le20(s(T48), s(T49), X79) :- le20(T48, T49, X79).
minus51(T98, 0, T98).
minus51(s(T103), s(T104), X159) :- minus51(T103, T104, X159).
minus43(T85, 0, s(T85)).
minus43(T90, s(T91), X136) :- minus51(T90, T91, X136).
div1(0, s(T22), 0).
div1(s(T28), s(T27), T10) :- le20(T27, T28, X48).
div1(s(T64), s(T65), 0) :- le20(T65, T64, false).
div1(s(T72), s(T73), s(T75)) :- ','(le20(T73, T72, true), minus43(T72, T73, X111)).
div1(s(T72), s(T73), s(T75)) :- ','(le20(T73, T72, true), ','(minus43(T72, T73, T78), div1(T78, s(T73), T75))).

Queries:

div1(g,g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
div1_in: (b,b,f)
le20_in: (b,b,f) (b,b,b)
minus43_in: (b,b,f)
minus51_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T28), s(T27), T10) → U4_GGA(T28, T27, T10, le20_in_gga(T27, T28, X48))
DIV1_IN_GGA(s(T28), s(T27), T10) → LE20_IN_GGA(T27, T28, X48)
LE20_IN_GGA(s(T48), s(T49), X79) → U1_GGA(T48, T49, X79, le20_in_gga(T48, T49, X79))
LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)
DIV1_IN_GGA(s(T64), s(T65), 0) → U5_GGA(T64, T65, le20_in_ggg(T65, T64, false))
DIV1_IN_GGA(s(T64), s(T65), 0) → LE20_IN_GGG(T65, T64, false)
LE20_IN_GGG(s(T48), s(T49), X79) → U1_GGG(T48, T49, X79, le20_in_ggg(T48, T49, X79))
LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, le20_in_ggg(T73, T72, true))
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → LE20_IN_GGG(T73, T72, true)
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, T75, minus43_in_gga(T72, T73, X111))
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → MINUS43_IN_GGA(T72, T73, X111)
MINUS43_IN_GGA(T90, s(T91), X136) → U3_GGA(T90, T91, X136, minus51_in_gga(T90, T91, X136))
MINUS43_IN_GGA(T90, s(T91), X136) → MINUS51_IN_GGA(T90, T91, X136)
MINUS51_IN_GGA(s(T103), s(T104), X159) → U2_GGA(T103, T104, X159, minus51_in_gga(T103, T104, X159))
MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_GGA(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U5_GGA(x1, x2, x3)  =  U5_GGA(x3)
LE20_IN_GGG(x1, x2, x3)  =  LE20_IN_GGG(x1, x2, x3)
U1_GGG(x1, x2, x3, x4)  =  U1_GGG(x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x4)
MINUS43_IN_GGA(x1, x2, x3)  =  MINUS43_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x2, x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T28), s(T27), T10) → U4_GGA(T28, T27, T10, le20_in_gga(T27, T28, X48))
DIV1_IN_GGA(s(T28), s(T27), T10) → LE20_IN_GGA(T27, T28, X48)
LE20_IN_GGA(s(T48), s(T49), X79) → U1_GGA(T48, T49, X79, le20_in_gga(T48, T49, X79))
LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)
DIV1_IN_GGA(s(T64), s(T65), 0) → U5_GGA(T64, T65, le20_in_ggg(T65, T64, false))
DIV1_IN_GGA(s(T64), s(T65), 0) → LE20_IN_GGG(T65, T64, false)
LE20_IN_GGG(s(T48), s(T49), X79) → U1_GGG(T48, T49, X79, le20_in_ggg(T48, T49, X79))
LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, le20_in_ggg(T73, T72, true))
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → LE20_IN_GGG(T73, T72, true)
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, T75, minus43_in_gga(T72, T73, X111))
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → MINUS43_IN_GGA(T72, T73, X111)
MINUS43_IN_GGA(T90, s(T91), X136) → U3_GGA(T90, T91, X136, minus51_in_gga(T90, T91, X136))
MINUS43_IN_GGA(T90, s(T91), X136) → MINUS51_IN_GGA(T90, T91, X136)
MINUS51_IN_GGA(s(T103), s(T104), X159) → U2_GGA(T103, T104, X159, minus51_in_gga(T103, T104, X159))
MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_GGA(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U5_GGA(x1, x2, x3)  =  U5_GGA(x3)
LE20_IN_GGG(x1, x2, x3)  =  LE20_IN_GGG(x1, x2, x3)
U1_GGG(x1, x2, x3, x4)  =  U1_GGG(x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x4)
MINUS43_IN_GGA(x1, x2, x3)  =  MINUS43_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x2, x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 13 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104)) → MINUS51_IN_GGA(T103, T104)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUS51_IN_GGA(s(T103), s(T104)) → MINUS51_IN_GGA(T103, T104)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
LE20_IN_GGG(x1, x2, x3)  =  LE20_IN_GGG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)
    The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49)) → LE20_IN_GGA(T48, T49)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE20_IN_GGA(s(T48), s(T49)) → LE20_IN_GGA(T48, T49)
    The graph contains the following edges 1 > 1, 2 > 2

(29) YES

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U5_gga(x1, x2, x3)  =  U5_gga(x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T72), s(T73)) → U6_GGA(T72, T73, le20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, le20_out_ggg) → U8_GGA(T73, minus43_in_gga(T72, T73))
U8_GGA(T73, minus43_out_gga(T78)) → DIV1_IN_GGA(T78, s(T73))

The TRS R consists of the following rules:

le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
minus43_in_gga(T85, 0) → minus43_out_gga(s(T85))
minus43_in_gga(T90, s(T91)) → U3_gga(minus51_in_gga(T90, T91))
U1_ggg(le20_out_ggg) → le20_out_ggg
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg
minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
minus43_in_gga(x0, x1)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(35) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule DIV1_IN_GGA(s(T72), s(T73)) → U6_GGA(T72, T73, le20_in_ggg(T73, T72, true)) at position [2] we obtained the following new rules [LPAR04]:

DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(T72, T73, le20_out_ggg) → U8_GGA(T73, minus43_in_gga(T72, T73))
U8_GGA(T73, minus43_out_gga(T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))

The TRS R consists of the following rules:

le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
minus43_in_gga(T85, 0) → minus43_out_gga(s(T85))
minus43_in_gga(T90, s(T91)) → U3_gga(minus51_in_gga(T90, T91))
U1_ggg(le20_out_ggg) → le20_out_ggg
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg
minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
minus43_in_gga(x0, x1)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(37) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U6_GGA(T72, T73, le20_out_ggg) → U8_GGA(T73, minus43_in_gga(T72, T73)) at position [1] we obtained the following new rules [LPAR04]:

U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg) → U8_GGA(s(x1), U3_gga(minus51_in_gga(x0, x1)))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GGA(T73, minus43_out_gga(T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg) → U8_GGA(s(x1), U3_gga(minus51_in_gga(x0, x1)))

The TRS R consists of the following rules:

le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
minus43_in_gga(T85, 0) → minus43_out_gga(s(T85))
minus43_in_gga(T90, s(T91)) → U3_gga(minus51_in_gga(T90, T91))
U1_ggg(le20_out_ggg) → le20_out_ggg
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg
minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
minus43_in_gga(x0, x1)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(39) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GGA(T73, minus43_out_gga(T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg) → U8_GGA(s(x1), U3_gga(minus51_in_gga(x0, x1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)
le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
U1_ggg(le20_out_ggg) → le20_out_ggg
le20_in_ggg(s(T43), 0, false) → le20_out_ggg

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
minus43_in_gga(x0, x1)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(41) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus43_in_gga(x0, x1)

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GGA(T73, minus43_out_gga(T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg) → U8_GGA(s(x1), U3_gga(minus51_in_gga(x0, x1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)
le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
U1_ggg(le20_out_ggg) → le20_out_ggg
le20_in_ggg(s(T43), 0, false) → le20_out_ggg

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(43) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U8_GGA(T73, minus43_out_gga(T78)) → DIV1_IN_GGA(T78, s(T73)) we obtained the following new rules [LPAR04]:

U8_GGA(0, minus43_out_gga(s(z0))) → DIV1_IN_GGA(s(z0), s(0))
U8_GGA(s(z1), minus43_out_gga(x1)) → DIV1_IN_GGA(x1, s(s(z1)))

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg) → U8_GGA(s(x1), U3_gga(minus51_in_gga(x0, x1)))
U8_GGA(0, minus43_out_gga(s(z0))) → DIV1_IN_GGA(s(z0), s(0))
U8_GGA(s(z1), minus43_out_gga(x1)) → DIV1_IN_GGA(x1, s(s(z1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)
le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
U1_ggg(le20_out_ggg) → le20_out_ggg
le20_in_ggg(s(T43), 0, false) → le20_out_ggg

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(45) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(46) Complex Obligation (AND)

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, s(x1), le20_out_ggg) → U8_GGA(s(x1), U3_gga(minus51_in_gga(x0, x1)))
U8_GGA(s(z1), minus43_out_gga(x1)) → DIV1_IN_GGA(x1, s(s(z1)))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)
le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
U1_ggg(le20_out_ggg) → le20_out_ggg
le20_in_ggg(s(T43), 0, false) → le20_out_ggg

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(48) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGA(x0, s(x1), le20_out_ggg) → U8_GGA(s(x1), U3_gga(minus51_in_gga(x0, x1))) we obtained the following new rules [LPAR04]:

U6_GGA(s(z0), s(z1), le20_out_ggg) → U8_GGA(s(z1), U3_gga(minus51_in_gga(s(z0), z1)))

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GGA(s(z1), minus43_out_gga(x1)) → DIV1_IN_GGA(x1, s(s(z1)))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))
U6_GGA(s(z0), s(z1), le20_out_ggg) → U8_GGA(s(z1), U3_gga(minus51_in_gga(s(z0), z1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)
le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
U1_ggg(le20_out_ggg) → le20_out_ggg
le20_in_ggg(s(T43), 0, false) → le20_out_ggg

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(50) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U8_GGA(s(z1), minus43_out_gga(x1)) → DIV1_IN_GGA(x1, s(s(z1))) we obtained the following new rules [LPAR04]:

U8_GGA(s(x0), minus43_out_gga(s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x0)))

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))
U6_GGA(s(z0), s(z1), le20_out_ggg) → U8_GGA(s(z1), U3_gga(minus51_in_gga(s(z0), z1)))
U8_GGA(s(x0), minus43_out_gga(s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x0)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)
le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
U1_ggg(le20_out_ggg) → le20_out_ggg
le20_in_ggg(s(T43), 0, false) → le20_out_ggg

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(le20_in_ggg(x0, x1, true)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV1_IN_GGA(x1, x2)) = x1   
POL(U1_ggg(x1)) = 0   
POL(U2_gga(x1)) = x1   
POL(U3_gga(x1)) = x1   
POL(U6_GGA(x1, x2, x3)) = x1   
POL(U8_GGA(x1, x2)) = x2   
POL(false) = 0   
POL(le20_in_ggg(x1, x2, x3)) = 0   
POL(le20_out_ggg) = 0   
POL(minus43_out_gga(x1)) = x1   
POL(minus51_in_gga(x1, x2)) = x1   
POL(minus51_out_gga(x1)) = x1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(s(z0), s(z1), le20_out_ggg) → U8_GGA(s(z1), U3_gga(minus51_in_gga(s(z0), z1)))
U8_GGA(s(x0), minus43_out_gga(s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x0)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)
le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
U1_ggg(le20_out_ggg) → le20_out_ggg
le20_in_ggg(s(T43), 0, false) → le20_out_ggg

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(54) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(55) TRUE

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))
U8_GGA(0, minus43_out_gga(s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(minus51_in_gga(T103, T104))
U3_gga(minus51_out_gga(X136)) → minus43_out_gga(X136)
U2_gga(minus51_out_gga(X159)) → minus51_out_gga(X159)
le20_in_ggg(0, T38, true) → le20_out_ggg
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(le20_in_ggg(T48, T49, X79))
U1_ggg(le20_out_ggg) → le20_out_ggg
le20_in_ggg(s(T43), 0, false) → le20_out_ggg

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(57) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))
U8_GGA(0, minus43_out_gga(s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)

R is empty.
The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

We have to consider all (P,Q,R)-chains.

(59) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

le20_in_ggg(x0, x1, x2)
U1_ggg(x0)
U3_gga(x0)
minus51_in_gga(x0, x1)
U2_gga(x0)

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))
U8_GGA(0, minus43_out_gga(s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(61) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U8_GGA(0, minus43_out_gga(s(z0))) evaluates to t =U8_GGA(0, minus43_out_gga(s(z0)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

U8_GGA(0, minus43_out_gga(s(z0)))DIV1_IN_GGA(s(z0), s(0))
with rule U8_GGA(0, minus43_out_gga(s(z0'))) → DIV1_IN_GGA(s(z0'), s(0)) at position [] and matcher [z0' / z0]

DIV1_IN_GGA(s(z0), s(0))U6_GGA(z0, 0, le20_out_ggg)
with rule DIV1_IN_GGA(s(x0'), s(0)) → U6_GGA(x0', 0, le20_out_ggg) at position [] and matcher [x0' / z0]

U6_GGA(z0, 0, le20_out_ggg)U8_GGA(0, minus43_out_gga(s(z0)))
with rule U6_GGA(x0, 0, le20_out_ggg) → U8_GGA(0, minus43_out_gga(s(x0)))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(62) NO

(63) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
div1_in: (b,b,f)
le20_in: (b,b,f) (b,b,b)
minus43_in: (b,b,f)
minus51_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x2, x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(64) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x2, x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)

(65) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T28), s(T27), T10) → U4_GGA(T28, T27, T10, le20_in_gga(T27, T28, X48))
DIV1_IN_GGA(s(T28), s(T27), T10) → LE20_IN_GGA(T27, T28, X48)
LE20_IN_GGA(s(T48), s(T49), X79) → U1_GGA(T48, T49, X79, le20_in_gga(T48, T49, X79))
LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)
DIV1_IN_GGA(s(T64), s(T65), 0) → U5_GGA(T64, T65, le20_in_ggg(T65, T64, false))
DIV1_IN_GGA(s(T64), s(T65), 0) → LE20_IN_GGG(T65, T64, false)
LE20_IN_GGG(s(T48), s(T49), X79) → U1_GGG(T48, T49, X79, le20_in_ggg(T48, T49, X79))
LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, le20_in_ggg(T73, T72, true))
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → LE20_IN_GGG(T73, T72, true)
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, T75, minus43_in_gga(T72, T73, X111))
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → MINUS43_IN_GGA(T72, T73, X111)
MINUS43_IN_GGA(T90, s(T91), X136) → U3_GGA(T90, T91, X136, minus51_in_gga(T90, T91, X136))
MINUS43_IN_GGA(T90, s(T91), X136) → MINUS51_IN_GGA(T90, T91, X136)
MINUS51_IN_GGA(s(T103), s(T104), X159) → U2_GGA(T103, T104, X159, minus51_in_gga(T103, T104, X159))
MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_GGA(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x2, x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U5_GGA(x1, x2, x3)  =  U5_GGA(x1, x2, x3)
LE20_IN_GGG(x1, x2, x3)  =  LE20_IN_GGG(x1, x2, x3)
U1_GGG(x1, x2, x3, x4)  =  U1_GGG(x1, x2, x3, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
MINUS43_IN_GGA(x1, x2, x3)  =  MINUS43_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(66) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T28), s(T27), T10) → U4_GGA(T28, T27, T10, le20_in_gga(T27, T28, X48))
DIV1_IN_GGA(s(T28), s(T27), T10) → LE20_IN_GGA(T27, T28, X48)
LE20_IN_GGA(s(T48), s(T49), X79) → U1_GGA(T48, T49, X79, le20_in_gga(T48, T49, X79))
LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)
DIV1_IN_GGA(s(T64), s(T65), 0) → U5_GGA(T64, T65, le20_in_ggg(T65, T64, false))
DIV1_IN_GGA(s(T64), s(T65), 0) → LE20_IN_GGG(T65, T64, false)
LE20_IN_GGG(s(T48), s(T49), X79) → U1_GGG(T48, T49, X79, le20_in_ggg(T48, T49, X79))
LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, le20_in_ggg(T73, T72, true))
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → LE20_IN_GGG(T73, T72, true)
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, T75, minus43_in_gga(T72, T73, X111))
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → MINUS43_IN_GGA(T72, T73, X111)
MINUS43_IN_GGA(T90, s(T91), X136) → U3_GGA(T90, T91, X136, minus51_in_gga(T90, T91, X136))
MINUS43_IN_GGA(T90, s(T91), X136) → MINUS51_IN_GGA(T90, T91, X136)
MINUS51_IN_GGA(s(T103), s(T104), X159) → U2_GGA(T103, T104, X159, minus51_in_gga(T103, T104, X159))
MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_GGA(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x2, x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U5_GGA(x1, x2, x3)  =  U5_GGA(x1, x2, x3)
LE20_IN_GGG(x1, x2, x3)  =  LE20_IN_GGG(x1, x2, x3)
U1_GGG(x1, x2, x3, x4)  =  U1_GGG(x1, x2, x3, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
MINUS43_IN_GGA(x1, x2, x3)  =  MINUS43_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(67) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 13 less nodes.

(68) Complex Obligation (AND)

(69) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x2, x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(70) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(71) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(72) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104)) → MINUS51_IN_GGA(T103, T104)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(74) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUS51_IN_GGA(s(T103), s(T104)) → MINUS51_IN_GGA(T103, T104)
    The graph contains the following edges 1 > 1, 2 > 2

(75) YES

(76) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x2, x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
LE20_IN_GGG(x1, x2, x3)  =  LE20_IN_GGG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(77) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(78) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(79) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(81) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE20_IN_GGG(s(T48), s(T49), X79) → LE20_IN_GGG(T48, T49, X79)
    The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3

(82) YES

(83) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x2, x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(84) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(85) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(86) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49)) → LE20_IN_GGA(T48, T49)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(88) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE20_IN_GGA(s(T48), s(T49)) → LE20_IN_GGA(T48, T49)
    The graph contains the following edges 1 > 1, 2 > 2

(89) YES

(90) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

div1_in_gga(0, s(T22), 0) → div1_out_gga(0, s(T22), 0)
div1_in_gga(s(T28), s(T27), T10) → U4_gga(T28, T27, T10, le20_in_gga(T27, T28, X48))
le20_in_gga(0, T38, true) → le20_out_gga(0, T38, true)
le20_in_gga(s(T43), 0, false) → le20_out_gga(s(T43), 0, false)
le20_in_gga(s(T48), s(T49), X79) → U1_gga(T48, T49, X79, le20_in_gga(T48, T49, X79))
U1_gga(T48, T49, X79, le20_out_gga(T48, T49, X79)) → le20_out_gga(s(T48), s(T49), X79)
U4_gga(T28, T27, T10, le20_out_gga(T27, T28, X48)) → div1_out_gga(s(T28), s(T27), T10)
div1_in_gga(s(T64), s(T65), 0) → U5_gga(T64, T65, le20_in_ggg(T65, T64, false))
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U5_gga(T64, T65, le20_out_ggg(T65, T64, false)) → div1_out_gga(s(T64), s(T65), 0)
div1_in_gga(s(T72), s(T73), s(T75)) → U6_gga(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U7_gga(T72, T73, T75, minus43_in_gga(T72, T73, X111))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U7_gga(T72, T73, T75, minus43_out_gga(T72, T73, X111)) → div1_out_gga(s(T72), s(T73), s(T75))
U6_gga(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_gga(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_gga(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → U9_gga(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U9_gga(T72, T73, T75, div1_out_gga(T78, s(T73), T75)) → div1_out_gga(s(T72), s(T73), s(T75))

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
0  =  0
s(x1)  =  s(x1)
div1_out_gga(x1, x2, x3)  =  div1_out_gga(x1, x2)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
le20_out_gga(x1, x2, x3)  =  le20_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U5_gga(x1, x2, x3)  =  U5_gga(x1, x2, x3)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
U7_gga(x1, x2, x3, x4)  =  U7_gga(x1, x2, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U8_gga(x1, x2, x3, x4)  =  U8_gga(x1, x2, x4)
U9_gga(x1, x2, x3, x4)  =  U9_gga(x1, x2, x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(91) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(92) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, le20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, T75, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, T75, minus43_in_gga(T72, T73, T78))
U8_GGA(T72, T73, T75, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
minus43_in_gga(T85, 0, s(T85)) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91), X136) → U3_gga(T90, T91, X136, minus51_in_gga(T90, T91, X136))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U3_gga(T90, T91, X136, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
minus51_in_gga(T98, 0, T98) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104), X159) → U2_gga(T103, T104, X159, minus51_in_gga(T103, T104, X159))
U2_gga(T103, T104, X159, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
le20_in_ggg(x1, x2, x3)  =  le20_in_ggg(x1, x2, x3)
true  =  true
le20_out_ggg(x1, x2, x3)  =  le20_out_ggg(x1, x2, x3)
false  =  false
U1_ggg(x1, x2, x3, x4)  =  U1_ggg(x1, x2, x3, x4)
minus43_in_gga(x1, x2, x3)  =  minus43_in_gga(x1, x2)
minus43_out_gga(x1, x2, x3)  =  minus43_out_gga(x1, x2, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minus51_out_gga(x1, x2, x3)  =  minus51_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(93) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(94) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T72), s(T73)) → U6_GGA(T72, T73, le20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, minus43_in_gga(T72, T73))
U8_GGA(T72, T73, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))

The TRS R consists of the following rules:

le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
minus43_in_gga(T85, 0) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91)) → U3_gga(T90, T91, minus51_in_gga(T90, T91))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
minus43_in_gga(x0, x1)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(95) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule DIV1_IN_GGA(s(T72), s(T73)) → U6_GGA(T72, T73, le20_in_ggg(T73, T72, true)) at position [2] we obtained the following new rules [LPAR04]:

DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(T72, T73, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, minus43_in_gga(T72, T73))
U8_GGA(T72, T73, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))

The TRS R consists of the following rules:

le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
minus43_in_gga(T85, 0) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91)) → U3_gga(T90, T91, minus51_in_gga(T90, T91))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
minus43_in_gga(x0, x1)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(97) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U6_GGA(T72, T73, le20_out_ggg(T73, T72, true)) → U8_GGA(T72, T73, minus43_in_gga(T72, T73)) at position [2] we obtained the following new rules [LPAR04]:

U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg(s(x1), x0, true)) → U8_GGA(x0, s(x1), U3_gga(x0, x1, minus51_in_gga(x0, x1)))

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GGA(T72, T73, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg(s(x1), x0, true)) → U8_GGA(x0, s(x1), U3_gga(x0, x1, minus51_in_gga(x0, x1)))

The TRS R consists of the following rules:

le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
minus43_in_gga(T85, 0) → minus43_out_gga(T85, 0, s(T85))
minus43_in_gga(T90, s(T91)) → U3_gga(T90, T91, minus51_in_gga(T90, T91))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)
minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
minus43_in_gga(x0, x1)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(99) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GGA(T72, T73, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg(s(x1), x0, true)) → U8_GGA(x0, s(x1), U3_gga(x0, x1, minus51_in_gga(x0, x1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
minus43_in_gga(x0, x1)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(101) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minus43_in_gga(x0, x1)

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GGA(T72, T73, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg(s(x1), x0, true)) → U8_GGA(x0, s(x1), U3_gga(x0, x1, minus51_in_gga(x0, x1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(103) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U8_GGA(T72, T73, minus43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73)) we obtained the following new rules [LPAR04]:

U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
U8_GGA(z0, s(z1), minus43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), le20_out_ggg(s(x1), x0, true)) → U8_GGA(x0, s(x1), U3_gga(x0, x1, minus51_in_gga(x0, x1)))
U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
U8_GGA(z0, s(z1), minus43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(105) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(106) Complex Obligation (AND)

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, s(x1), le20_out_ggg(s(x1), x0, true)) → U8_GGA(x0, s(x1), U3_gga(x0, x1, minus51_in_gga(x0, x1)))
U8_GGA(z0, s(z1), minus43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(108) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGA(x0, s(x1), le20_out_ggg(s(x1), x0, true)) → U8_GGA(x0, s(x1), U3_gga(x0, x1, minus51_in_gga(x0, x1))) we obtained the following new rules [LPAR04]:

U6_GGA(s(z0), s(z1), le20_out_ggg(s(z1), s(z0), true)) → U8_GGA(s(z0), s(z1), U3_gga(s(z0), z1, minus51_in_gga(s(z0), z1)))

(109) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GGA(z0, s(z1), minus43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))
U6_GGA(s(z0), s(z1), le20_out_ggg(s(z1), s(z0), true)) → U8_GGA(s(z0), s(z1), U3_gga(s(z0), z1, minus51_in_gga(s(z0), z1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(110) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U8_GGA(z0, s(z1), minus43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1))) we obtained the following new rules [LPAR04]:

U8_GGA(s(z0), s(z1), minus43_out_gga(s(z0), s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))

(111) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))
U6_GGA(s(z0), s(z1), le20_out_ggg(s(z1), s(z0), true)) → U8_GGA(s(z0), s(z1), U3_gga(s(z0), z1, minus51_in_gga(s(z0), z1)))
U8_GGA(s(z0), s(z1), minus43_out_gga(s(z0), s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(112) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U8_GGA(s(z0), s(z1), minus43_out_gga(s(z0), s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1))) we obtained the following new rules [LPAR04]:

U8_GGA(s(x0), s(x1), minus43_out_gga(s(x0), s(x1), s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x1)))

(113) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))
U6_GGA(s(z0), s(z1), le20_out_ggg(s(z1), s(z0), true)) → U8_GGA(s(z0), s(z1), U3_gga(s(z0), z1, minus51_in_gga(s(z0), z1)))
U8_GGA(s(x0), s(x1), minus43_out_gga(s(x0), s(x1), s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(114) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U6_GGA(s(z0), s(z1), le20_out_ggg(s(z1), s(z0), true)) → U8_GGA(s(z0), s(z1), U3_gga(s(z0), z1, minus51_in_gga(s(z0), z1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV1_IN_GGA(x1, x2)) = x1   
POL(U1_ggg(x1, x2, x3, x4)) = 0   
POL(U2_gga(x1, x2, x3)) = x3   
POL(U3_gga(x1, x2, x3)) = x3   
POL(U6_GGA(x1, x2, x3)) = 1 + x1   
POL(U8_GGA(x1, x2, x3)) = x3   
POL(false) = 0   
POL(le20_in_ggg(x1, x2, x3)) = 0   
POL(le20_out_ggg(x1, x2, x3)) = 0   
POL(minus43_out_gga(x1, x2, x3)) = x3   
POL(minus51_in_gga(x1, x2)) = x1   
POL(minus51_out_gga(x1, x2, x3)) = x3   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U1_ggg(x0, x1, true, le20_in_ggg(x0, x1, true)))
U8_GGA(s(x0), s(x1), minus43_out_gga(s(x0), s(x1), s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x1)))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(116) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(117) TRUE

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))
U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))

The TRS R consists of the following rules:

minus51_in_gga(T98, 0) → minus51_out_gga(T98, 0, T98)
minus51_in_gga(s(T103), s(T104)) → U2_gga(T103, T104, minus51_in_gga(T103, T104))
U3_gga(T90, T91, minus51_out_gga(T90, T91, X136)) → minus43_out_gga(T90, s(T91), X136)
U2_gga(T103, T104, minus51_out_gga(T103, T104, X159)) → minus51_out_gga(s(T103), s(T104), X159)
le20_in_ggg(0, T38, true) → le20_out_ggg(0, T38, true)
le20_in_ggg(s(T48), s(T49), X79) → U1_ggg(T48, T49, X79, le20_in_ggg(T48, T49, X79))
U1_ggg(T48, T49, X79, le20_out_ggg(T48, T49, X79)) → le20_out_ggg(s(T48), s(T49), X79)
le20_in_ggg(s(T43), 0, false) → le20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(119) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(120) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))
U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))

R is empty.
The set Q consists of the following terms:

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(121) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

le20_in_ggg(x0, x1, x2)
U1_ggg(x0, x1, x2, x3)
U3_gga(x0, x1, x2)
minus51_in_gga(x0, x1)
U2_gga(x0, x1, x2)

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))
U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, le20_out_ggg(0, x0, true))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(123) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0))) evaluates to t =U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0)))DIV1_IN_GGA(s(z0), s(0))
with rule U8_GGA(z0', 0, minus43_out_gga(z0', 0, s(z0'))) → DIV1_IN_GGA(s(z0'), s(0)) at position [] and matcher [z0' / z0]

DIV1_IN_GGA(s(z0), s(0))U6_GGA(z0, 0, le20_out_ggg(0, z0, true))
with rule DIV1_IN_GGA(s(x0'), s(0)) → U6_GGA(x0', 0, le20_out_ggg(0, x0', true)) at position [] and matcher [x0' / z0]

U6_GGA(z0, 0, le20_out_ggg(0, z0, true))U8_GGA(z0, 0, minus43_out_gga(z0, 0, s(z0)))
with rule U6_GGA(x0, 0, le20_out_ggg(0, x0, true)) → U8_GGA(x0, 0, minus43_out_gga(x0, 0, s(x0)))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(124) NO