(0) Obligation:

Clauses:

le(0, Y, true).
le(s(X), 0, false).
le(s(X), s(Y), B) :- le(X, Y, B).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
div(X, s(Y), Z) :- ','(le(s(Y), X, B), if(B, X, s(Y), Z)).
if(false, X, s(Y), 0).
if(true, X, s(Y), s(Z)) :- ','(minus(X, Y, U), div(U, s(Y), Z)).

Queries:

div(g,g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

le20(s(T48), s(T49), X79) :- le20(T48, T49, X79).
minus51(s(T103), s(T104), X159) :- minus51(T103, T104, X159).
div1(s(T28), s(T27), T10) :- le20(T27, T28, X48).
div1(s(T90), s(s(T91)), s(T75)) :- ','(lec20(s(T91), T90, true), minus51(T90, T91, X136)).
div1(s(T72), s(T73), s(T75)) :- ','(lec20(T73, T72, true), ','(minusc43(T72, T73, T78), div1(T78, s(T73), T75))).

Clauses:

lec20(0, T38, true).
lec20(s(T43), 0, false).
lec20(s(T48), s(T49), X79) :- lec20(T48, T49, X79).
divc1(0, s(T22), 0).
divc1(s(T64), s(T65), 0) :- lec20(T65, T64, false).
divc1(s(T72), s(T73), s(T75)) :- ','(lec20(T73, T72, true), ','(minusc43(T72, T73, T78), divc1(T78, s(T73), T75))).
minusc51(T98, 0, T98).
minusc51(s(T103), s(T104), X159) :- minusc51(T103, T104, X159).
minusc43(T85, 0, s(T85)).
minusc43(T90, s(T91), X136) :- minusc51(T90, T91, X136).

Afs:

div1(x1, x2, x3)  =  div1(x1, x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
div1_in: (b,b,f)
le20_in: (b,b,f)
lec20_in: (b,b,b)
minus51_in: (b,b,f)
minusc43_in: (b,b,f)
minusc51_in: (b,b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T28), s(T27), T10) → U3_GGA(T28, T27, T10, le20_in_gga(T27, T28, X48))
DIV1_IN_GGA(s(T28), s(T27), T10) → LE20_IN_GGA(T27, T28, X48)
LE20_IN_GGA(s(T48), s(T49), X79) → U1_GGA(T48, T49, X79, le20_in_gga(T48, T49, X79))
LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)
DIV1_IN_GGA(s(T90), s(s(T91)), s(T75)) → U4_GGA(T90, T91, T75, lec20_in_ggg(s(T91), T90, true))
U4_GGA(T90, T91, T75, lec20_out_ggg(s(T91), T90, true)) → U5_GGA(T90, T91, T75, minus51_in_gga(T90, T91, X136))
U4_GGA(T90, T91, T75, lec20_out_ggg(s(T91), T90, true)) → MINUS51_IN_GGA(T90, T91, X136)
MINUS51_IN_GGA(s(T103), s(T104), X159) → U2_GGA(T103, T104, X159, minus51_in_gga(T103, T104, X159))
MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, lec20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, T75, lec20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, T75, minusc43_in_gga(T72, T73, T78))
U7_GGA(T72, T73, T75, minusc43_out_gga(T72, T73, T78)) → U8_GGA(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U7_GGA(T72, T73, T75, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
minusc43_in_gga(T85, 0, s(T85)) → minusc43_out_gga(T85, 0, s(T85))
minusc43_in_gga(T90, s(T91), X136) → U16_gga(T90, T91, X136, minusc51_in_gga(T90, T91, X136))
minusc51_in_gga(T98, 0, T98) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104), X159) → U15_gga(T103, T104, X159, minusc51_in_gga(T103, T104, X159))
U15_gga(T103, T104, X159, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
U16_gga(T90, T91, X136, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
s(x1)  =  s(x1)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
lec20_in_ggg(x1, x2, x3)  =  lec20_in_ggg(x1, x2, x3)
0  =  0
true  =  true
lec20_out_ggg(x1, x2, x3)  =  lec20_out_ggg(x1, x2, x3)
false  =  false
U10_ggg(x1, x2, x3, x4)  =  U10_ggg(x1, x2, x3, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minusc43_in_gga(x1, x2, x3)  =  minusc43_in_gga(x1, x2)
minusc43_out_gga(x1, x2, x3)  =  minusc43_out_gga(x1, x2, x3)
U16_gga(x1, x2, x3, x4)  =  U16_gga(x1, x2, x4)
minusc51_in_gga(x1, x2, x3)  =  minusc51_in_gga(x1, x2)
minusc51_out_gga(x1, x2, x3)  =  minusc51_out_gga(x1, x2, x3)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T28), s(T27), T10) → U3_GGA(T28, T27, T10, le20_in_gga(T27, T28, X48))
DIV1_IN_GGA(s(T28), s(T27), T10) → LE20_IN_GGA(T27, T28, X48)
LE20_IN_GGA(s(T48), s(T49), X79) → U1_GGA(T48, T49, X79, le20_in_gga(T48, T49, X79))
LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)
DIV1_IN_GGA(s(T90), s(s(T91)), s(T75)) → U4_GGA(T90, T91, T75, lec20_in_ggg(s(T91), T90, true))
U4_GGA(T90, T91, T75, lec20_out_ggg(s(T91), T90, true)) → U5_GGA(T90, T91, T75, minus51_in_gga(T90, T91, X136))
U4_GGA(T90, T91, T75, lec20_out_ggg(s(T91), T90, true)) → MINUS51_IN_GGA(T90, T91, X136)
MINUS51_IN_GGA(s(T103), s(T104), X159) → U2_GGA(T103, T104, X159, minus51_in_gga(T103, T104, X159))
MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)
DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, lec20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, T75, lec20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, T75, minusc43_in_gga(T72, T73, T78))
U7_GGA(T72, T73, T75, minusc43_out_gga(T72, T73, T78)) → U8_GGA(T72, T73, T75, div1_in_gga(T78, s(T73), T75))
U7_GGA(T72, T73, T75, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
minusc43_in_gga(T85, 0, s(T85)) → minusc43_out_gga(T85, 0, s(T85))
minusc43_in_gga(T90, s(T91), X136) → U16_gga(T90, T91, X136, minusc51_in_gga(T90, T91, X136))
minusc51_in_gga(T98, 0, T98) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104), X159) → U15_gga(T103, T104, X159, minusc51_in_gga(T103, T104, X159))
U15_gga(T103, T104, X159, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
U16_gga(T90, T91, X136, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)

The argument filtering Pi contains the following mapping:
div1_in_gga(x1, x2, x3)  =  div1_in_gga(x1, x2)
s(x1)  =  s(x1)
le20_in_gga(x1, x2, x3)  =  le20_in_gga(x1, x2)
lec20_in_ggg(x1, x2, x3)  =  lec20_in_ggg(x1, x2, x3)
0  =  0
true  =  true
lec20_out_ggg(x1, x2, x3)  =  lec20_out_ggg(x1, x2, x3)
false  =  false
U10_ggg(x1, x2, x3, x4)  =  U10_ggg(x1, x2, x3, x4)
minus51_in_gga(x1, x2, x3)  =  minus51_in_gga(x1, x2)
minusc43_in_gga(x1, x2, x3)  =  minusc43_in_gga(x1, x2)
minusc43_out_gga(x1, x2, x3)  =  minusc43_out_gga(x1, x2, x3)
U16_gga(x1, x2, x3, x4)  =  U16_gga(x1, x2, x4)
minusc51_in_gga(x1, x2, x3)  =  minusc51_in_gga(x1, x2)
minusc51_out_gga(x1, x2, x3)  =  minusc51_out_gga(x1, x2, x3)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4)  =  U8_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 8 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)

The TRS R consists of the following rules:

lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
minusc43_in_gga(T85, 0, s(T85)) → minusc43_out_gga(T85, 0, s(T85))
minusc43_in_gga(T90, s(T91), X136) → U16_gga(T90, T91, X136, minusc51_in_gga(T90, T91, X136))
minusc51_in_gga(T98, 0, T98) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104), X159) → U15_gga(T103, T104, X159, minusc51_in_gga(T103, T104, X159))
U15_gga(T103, T104, X159, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
U16_gga(T90, T91, X136, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lec20_in_ggg(x1, x2, x3)  =  lec20_in_ggg(x1, x2, x3)
0  =  0
true  =  true
lec20_out_ggg(x1, x2, x3)  =  lec20_out_ggg(x1, x2, x3)
false  =  false
U10_ggg(x1, x2, x3, x4)  =  U10_ggg(x1, x2, x3, x4)
minusc43_in_gga(x1, x2, x3)  =  minusc43_in_gga(x1, x2)
minusc43_out_gga(x1, x2, x3)  =  minusc43_out_gga(x1, x2, x3)
U16_gga(x1, x2, x3, x4)  =  U16_gga(x1, x2, x4)
minusc51_in_gga(x1, x2, x3)  =  minusc51_in_gga(x1, x2)
minusc51_out_gga(x1, x2, x3)  =  minusc51_out_gga(x1, x2, x3)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104), X159) → MINUS51_IN_GGA(T103, T104, X159)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUS51_IN_GGA(x1, x2, x3)  =  MINUS51_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS51_IN_GGA(s(T103), s(T104)) → MINUS51_IN_GGA(T103, T104)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUS51_IN_GGA(s(T103), s(T104)) → MINUS51_IN_GGA(T103, T104)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)

The TRS R consists of the following rules:

lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
minusc43_in_gga(T85, 0, s(T85)) → minusc43_out_gga(T85, 0, s(T85))
minusc43_in_gga(T90, s(T91), X136) → U16_gga(T90, T91, X136, minusc51_in_gga(T90, T91, X136))
minusc51_in_gga(T98, 0, T98) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104), X159) → U15_gga(T103, T104, X159, minusc51_in_gga(T103, T104, X159))
U15_gga(T103, T104, X159, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
U16_gga(T90, T91, X136, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lec20_in_ggg(x1, x2, x3)  =  lec20_in_ggg(x1, x2, x3)
0  =  0
true  =  true
lec20_out_ggg(x1, x2, x3)  =  lec20_out_ggg(x1, x2, x3)
false  =  false
U10_ggg(x1, x2, x3, x4)  =  U10_ggg(x1, x2, x3, x4)
minusc43_in_gga(x1, x2, x3)  =  minusc43_in_gga(x1, x2)
minusc43_out_gga(x1, x2, x3)  =  minusc43_out_gga(x1, x2, x3)
U16_gga(x1, x2, x3, x4)  =  U16_gga(x1, x2, x4)
minusc51_in_gga(x1, x2, x3)  =  minusc51_in_gga(x1, x2)
minusc51_out_gga(x1, x2, x3)  =  minusc51_out_gga(x1, x2, x3)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49), X79) → LE20_IN_GGA(T48, T49, X79)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LE20_IN_GGA(x1, x2, x3)  =  LE20_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LE20_IN_GGA(s(T48), s(T49)) → LE20_IN_GGA(T48, T49)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LE20_IN_GGA(s(T48), s(T49)) → LE20_IN_GGA(T48, T49)
    The graph contains the following edges 1 > 1, 2 > 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T72), s(T73), s(T75)) → U6_GGA(T72, T73, T75, lec20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, T75, lec20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, T75, minusc43_in_gga(T72, T73, T78))
U7_GGA(T72, T73, T75, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73), T75)

The TRS R consists of the following rules:

lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
minusc43_in_gga(T85, 0, s(T85)) → minusc43_out_gga(T85, 0, s(T85))
minusc43_in_gga(T90, s(T91), X136) → U16_gga(T90, T91, X136, minusc51_in_gga(T90, T91, X136))
minusc51_in_gga(T98, 0, T98) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104), X159) → U15_gga(T103, T104, X159, minusc51_in_gga(T103, T104, X159))
U15_gga(T103, T104, X159, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
U16_gga(T90, T91, X136, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lec20_in_ggg(x1, x2, x3)  =  lec20_in_ggg(x1, x2, x3)
0  =  0
true  =  true
lec20_out_ggg(x1, x2, x3)  =  lec20_out_ggg(x1, x2, x3)
false  =  false
U10_ggg(x1, x2, x3, x4)  =  U10_ggg(x1, x2, x3, x4)
minusc43_in_gga(x1, x2, x3)  =  minusc43_in_gga(x1, x2)
minusc43_out_gga(x1, x2, x3)  =  minusc43_out_gga(x1, x2, x3)
U16_gga(x1, x2, x3, x4)  =  U16_gga(x1, x2, x4)
minusc51_in_gga(x1, x2, x3)  =  minusc51_in_gga(x1, x2)
minusc51_out_gga(x1, x2, x3)  =  minusc51_out_gga(x1, x2, x3)
U15_gga(x1, x2, x3, x4)  =  U15_gga(x1, x2, x4)
DIV1_IN_GGA(x1, x2, x3)  =  DIV1_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4)  =  U7_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(22) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(T72), s(T73)) → U6_GGA(T72, T73, lec20_in_ggg(T73, T72, true))
U6_GGA(T72, T73, lec20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, minusc43_in_gga(T72, T73))
U7_GGA(T72, T73, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))

The TRS R consists of the following rules:

lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
minusc43_in_gga(T85, 0) → minusc43_out_gga(T85, 0, s(T85))
minusc43_in_gga(T90, s(T91)) → U16_gga(T90, T91, minusc51_in_gga(T90, T91))
minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc43_in_gga(x0, x1)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(24) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule DIV1_IN_GGA(s(T72), s(T73)) → U6_GGA(T72, T73, lec20_in_ggg(T73, T72, true)) at position [2] we obtained the following new rules [LPAR04]:

DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(T72, T73, lec20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, minusc43_in_gga(T72, T73))
U7_GGA(T72, T73, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))

The TRS R consists of the following rules:

lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
minusc43_in_gga(T85, 0) → minusc43_out_gga(T85, 0, s(T85))
minusc43_in_gga(T90, s(T91)) → U16_gga(T90, T91, minusc51_in_gga(T90, T91))
minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc43_in_gga(x0, x1)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(26) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U6_GGA(T72, T73, lec20_out_ggg(T73, T72, true)) → U7_GGA(T72, T73, minusc43_in_gga(T72, T73)) at position [2] we obtained the following new rules [LPAR04]:

U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), lec20_out_ggg(s(x1), x0, true)) → U7_GGA(x0, s(x1), U16_gga(x0, x1, minusc51_in_gga(x0, x1)))

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGA(T72, T73, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), lec20_out_ggg(s(x1), x0, true)) → U7_GGA(x0, s(x1), U16_gga(x0, x1, minusc51_in_gga(x0, x1)))

The TRS R consists of the following rules:

lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
minusc43_in_gga(T85, 0) → minusc43_out_gga(T85, 0, s(T85))
minusc43_in_gga(T90, s(T91)) → U16_gga(T90, T91, minusc51_in_gga(T90, T91))
minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc43_in_gga(x0, x1)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(28) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGA(T72, T73, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), lec20_out_ggg(s(x1), x0, true)) → U7_GGA(x0, s(x1), U16_gga(x0, x1, minusc51_in_gga(x0, x1)))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc43_in_gga(x0, x1)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(30) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

minusc43_in_gga(x0, x1)

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGA(T72, T73, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), lec20_out_ggg(s(x1), x0, true)) → U7_GGA(x0, s(x1), U16_gga(x0, x1, minusc51_in_gga(x0, x1)))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(32) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U7_GGA(T72, T73, minusc43_out_gga(T72, T73, T78)) → DIV1_IN_GGA(T78, s(T73)) we obtained the following new rules [LPAR04]:

U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
U7_GGA(z0, s(z1), minusc43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))
U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))
U6_GGA(x0, s(x1), lec20_out_ggg(s(x1), x0, true)) → U7_GGA(x0, s(x1), U16_gga(x0, x1, minusc51_in_gga(x0, x1)))
U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
U7_GGA(z0, s(z1), minusc43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(34) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(35) Complex Obligation (AND)

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, s(x1), lec20_out_ggg(s(x1), x0, true)) → U7_GGA(x0, s(x1), U16_gga(x0, x1, minusc51_in_gga(x0, x1)))
U7_GGA(z0, s(z1), minusc43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(37) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GGA(x0, s(x1), lec20_out_ggg(s(x1), x0, true)) → U7_GGA(x0, s(x1), U16_gga(x0, x1, minusc51_in_gga(x0, x1))) we obtained the following new rules [LPAR04]:

U6_GGA(s(z0), s(z1), lec20_out_ggg(s(z1), s(z0), true)) → U7_GGA(s(z0), s(z1), U16_gga(s(z0), z1, minusc51_in_gga(s(z0), z1)))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U7_GGA(z0, s(z1), minusc43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))
DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))
U6_GGA(s(z0), s(z1), lec20_out_ggg(s(z1), s(z0), true)) → U7_GGA(s(z0), s(z1), U16_gga(s(z0), z1, minusc51_in_gga(s(z0), z1)))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(39) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U7_GGA(z0, s(z1), minusc43_out_gga(z0, s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1))) we obtained the following new rules [LPAR04]:

U7_GGA(s(z0), s(z1), minusc43_out_gga(s(z0), s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))
U6_GGA(s(z0), s(z1), lec20_out_ggg(s(z1), s(z0), true)) → U7_GGA(s(z0), s(z1), U16_gga(s(z0), z1, minusc51_in_gga(s(z0), z1)))
U7_GGA(s(z0), s(z1), minusc43_out_gga(s(z0), s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1)))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(41) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U7_GGA(s(z0), s(z1), minusc43_out_gga(s(z0), s(z1), x2)) → DIV1_IN_GGA(x2, s(s(z1))) we obtained the following new rules [LPAR04]:

U7_GGA(s(x0), s(x1), minusc43_out_gga(s(x0), s(x1), s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x1)))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))
U6_GGA(s(z0), s(z1), lec20_out_ggg(s(z1), s(z0), true)) → U7_GGA(s(z0), s(z1), U16_gga(s(z0), z1, minusc51_in_gga(s(z0), z1)))
U7_GGA(s(x0), s(x1), minusc43_out_gga(s(x0), s(x1), s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x1)))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U6_GGA(s(z0), s(z1), lec20_out_ggg(s(z1), s(z0), true)) → U7_GGA(s(z0), s(z1), U16_gga(s(z0), z1, minusc51_in_gga(s(z0), z1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV1_IN_GGA(x1, x2)) = x1   
POL(U10_ggg(x1, x2, x3, x4)) = 0   
POL(U15_gga(x1, x2, x3)) = x3   
POL(U16_gga(x1, x2, x3)) = x3   
POL(U6_GGA(x1, x2, x3)) = 1 + x1   
POL(U7_GGA(x1, x2, x3)) = x3   
POL(false) = 0   
POL(lec20_in_ggg(x1, x2, x3)) = 0   
POL(lec20_out_ggg(x1, x2, x3)) = 0   
POL(minusc43_out_gga(x1, x2, x3)) = x3   
POL(minusc51_in_gga(x1, x2)) = x1   
POL(minusc51_out_gga(x1, x2, x3)) = x3   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [FROCOS05] were oriented:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGA(s(s(x1)), s(s(x0))) → U6_GGA(s(x1), s(x0), U10_ggg(x0, x1, true, lec20_in_ggg(x0, x1, true)))
U7_GGA(s(x0), s(x1), minusc43_out_gga(s(x0), s(x1), s(s(y_0)))) → DIV1_IN_GGA(s(s(y_0)), s(s(x1)))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(45) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(46) TRUE

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))
U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))

The TRS R consists of the following rules:

minusc51_in_gga(T98, 0) → minusc51_out_gga(T98, 0, T98)
minusc51_in_gga(s(T103), s(T104)) → U15_gga(T103, T104, minusc51_in_gga(T103, T104))
U16_gga(T90, T91, minusc51_out_gga(T90, T91, X136)) → minusc43_out_gga(T90, s(T91), X136)
U15_gga(T103, T104, minusc51_out_gga(T103, T104, X159)) → minusc51_out_gga(s(T103), s(T104), X159)
lec20_in_ggg(0, T38, true) → lec20_out_ggg(0, T38, true)
lec20_in_ggg(s(T48), s(T49), X79) → U10_ggg(T48, T49, X79, lec20_in_ggg(T48, T49, X79))
U10_ggg(T48, T49, X79, lec20_out_ggg(T48, T49, X79)) → lec20_out_ggg(s(T48), s(T49), X79)
lec20_in_ggg(s(T43), 0, false) → lec20_out_ggg(s(T43), 0, false)

The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(48) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))
U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))

R is empty.
The set Q consists of the following terms:

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(50) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

lec20_in_ggg(x0, x1, x2)
U10_ggg(x0, x1, x2, x3)
minusc51_in_gga(x0, x1)
U15_gga(x0, x1, x2)
U16_gga(x0, x1, x2)

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))
U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0))) → DIV1_IN_GGA(s(z0), s(0))
DIV1_IN_GGA(s(x0), s(0)) → U6_GGA(x0, 0, lec20_out_ggg(0, x0, true))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(52) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0))) evaluates to t =U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0)))DIV1_IN_GGA(s(z0), s(0))
with rule U7_GGA(z0', 0, minusc43_out_gga(z0', 0, s(z0'))) → DIV1_IN_GGA(s(z0'), s(0)) at position [] and matcher [z0' / z0]

DIV1_IN_GGA(s(z0), s(0))U6_GGA(z0, 0, lec20_out_ggg(0, z0, true))
with rule DIV1_IN_GGA(s(x0'), s(0)) → U6_GGA(x0', 0, lec20_out_ggg(0, x0', true)) at position [] and matcher [x0' / z0]

U6_GGA(z0, 0, lec20_out_ggg(0, z0, true))U7_GGA(z0, 0, minusc43_out_gga(z0, 0, s(z0)))
with rule U6_GGA(x0, 0, lec20_out_ggg(0, x0, true)) → U7_GGA(x0, 0, minusc43_out_gga(x0, 0, s(x0)))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(53) NO