(0) Obligation:
Clauses:
flatten(atom(X), .(X, [])).
flatten(cons(atom(X), U), .(X, Y)) :- flatten(U, Y).
flatten(cons(cons(U, V), W), X) :- flatten(cons(U, cons(V, W)), X).
Queries:
flatten(g,a).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
flatten1(cons(atom(T8), cons(atom(T29), T30)), .(T8, .(T29, T32))) :- flatten1(T30, T32).
flatten1(cons(atom(T8), cons(cons(T51, T52), T53)), .(T8, T55)) :- flatten1(cons(T51, cons(T52, T53)), T55).
flatten1(cons(cons(atom(T85), T86), T87), .(T85, T89)) :- flatten1(cons(T86, T87), T89).
flatten1(cons(cons(cons(T103, T104), T105), T106), T108) :- flatten1(cons(T103, cons(T104, cons(T105, T106))), T108).
Clauses:
flattenc1(atom(T4), .(T4, [])).
flattenc1(cons(atom(T8), atom(T16)), .(T8, .(T16, []))).
flattenc1(cons(atom(T8), cons(atom(T29), T30)), .(T8, .(T29, T32))) :- flattenc1(T30, T32).
flattenc1(cons(atom(T8), cons(cons(T51, T52), T53)), .(T8, T55)) :- flattenc1(cons(T51, cons(T52, T53)), T55).
flattenc1(cons(cons(atom(T85), T86), T87), .(T85, T89)) :- flattenc1(cons(T86, T87), T89).
flattenc1(cons(cons(cons(T103, T104), T105), T106), T108) :- flattenc1(cons(T103, cons(T104, cons(T105, T106))), T108).
Afs:
flatten1(x1, x2) = flatten1(x1)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flatten1_in: (b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN1_IN_GA(cons(atom(T8), cons(atom(T29), T30)), .(T8, .(T29, T32))) → U1_GA(T8, T29, T30, T32, flatten1_in_ga(T30, T32))
FLATTEN1_IN_GA(cons(atom(T8), cons(atom(T29), T30)), .(T8, .(T29, T32))) → FLATTEN1_IN_GA(T30, T32)
FLATTEN1_IN_GA(cons(atom(T8), cons(cons(T51, T52), T53)), .(T8, T55)) → U2_GA(T8, T51, T52, T53, T55, flatten1_in_ga(cons(T51, cons(T52, T53)), T55))
FLATTEN1_IN_GA(cons(atom(T8), cons(cons(T51, T52), T53)), .(T8, T55)) → FLATTEN1_IN_GA(cons(T51, cons(T52, T53)), T55)
FLATTEN1_IN_GA(cons(cons(atom(T85), T86), T87), .(T85, T89)) → U3_GA(T85, T86, T87, T89, flatten1_in_ga(cons(T86, T87), T89))
FLATTEN1_IN_GA(cons(cons(atom(T85), T86), T87), .(T85, T89)) → FLATTEN1_IN_GA(cons(T86, T87), T89)
FLATTEN1_IN_GA(cons(cons(cons(T103, T104), T105), T106), T108) → U4_GA(T103, T104, T105, T106, T108, flatten1_in_ga(cons(T103, cons(T104, cons(T105, T106))), T108))
FLATTEN1_IN_GA(cons(cons(cons(T103, T104), T105), T106), T108) → FLATTEN1_IN_GA(cons(T103, cons(T104, cons(T105, T106))), T108)
R is empty.
The argument filtering Pi contains the following mapping:
flatten1_in_ga(
x1,
x2) =
flatten1_in_ga(
x1)
cons(
x1,
x2) =
cons(
x1,
x2)
atom(
x1) =
atom(
x1)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN1_IN_GA(
x1,
x2) =
FLATTEN1_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x1,
x2,
x3,
x5)
U2_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GA(
x1,
x2,
x3,
x4,
x6)
U3_GA(
x1,
x2,
x3,
x4,
x5) =
U3_GA(
x1,
x2,
x3,
x5)
U4_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN1_IN_GA(cons(atom(T8), cons(atom(T29), T30)), .(T8, .(T29, T32))) → U1_GA(T8, T29, T30, T32, flatten1_in_ga(T30, T32))
FLATTEN1_IN_GA(cons(atom(T8), cons(atom(T29), T30)), .(T8, .(T29, T32))) → FLATTEN1_IN_GA(T30, T32)
FLATTEN1_IN_GA(cons(atom(T8), cons(cons(T51, T52), T53)), .(T8, T55)) → U2_GA(T8, T51, T52, T53, T55, flatten1_in_ga(cons(T51, cons(T52, T53)), T55))
FLATTEN1_IN_GA(cons(atom(T8), cons(cons(T51, T52), T53)), .(T8, T55)) → FLATTEN1_IN_GA(cons(T51, cons(T52, T53)), T55)
FLATTEN1_IN_GA(cons(cons(atom(T85), T86), T87), .(T85, T89)) → U3_GA(T85, T86, T87, T89, flatten1_in_ga(cons(T86, T87), T89))
FLATTEN1_IN_GA(cons(cons(atom(T85), T86), T87), .(T85, T89)) → FLATTEN1_IN_GA(cons(T86, T87), T89)
FLATTEN1_IN_GA(cons(cons(cons(T103, T104), T105), T106), T108) → U4_GA(T103, T104, T105, T106, T108, flatten1_in_ga(cons(T103, cons(T104, cons(T105, T106))), T108))
FLATTEN1_IN_GA(cons(cons(cons(T103, T104), T105), T106), T108) → FLATTEN1_IN_GA(cons(T103, cons(T104, cons(T105, T106))), T108)
R is empty.
The argument filtering Pi contains the following mapping:
flatten1_in_ga(
x1,
x2) =
flatten1_in_ga(
x1)
cons(
x1,
x2) =
cons(
x1,
x2)
atom(
x1) =
atom(
x1)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN1_IN_GA(
x1,
x2) =
FLATTEN1_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4,
x5) =
U1_GA(
x1,
x2,
x3,
x5)
U2_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U2_GA(
x1,
x2,
x3,
x4,
x6)
U3_GA(
x1,
x2,
x3,
x4,
x5) =
U3_GA(
x1,
x2,
x3,
x5)
U4_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN1_IN_GA(cons(atom(T8), cons(cons(T51, T52), T53)), .(T8, T55)) → FLATTEN1_IN_GA(cons(T51, cons(T52, T53)), T55)
FLATTEN1_IN_GA(cons(atom(T8), cons(atom(T29), T30)), .(T8, .(T29, T32))) → FLATTEN1_IN_GA(T30, T32)
FLATTEN1_IN_GA(cons(cons(atom(T85), T86), T87), .(T85, T89)) → FLATTEN1_IN_GA(cons(T86, T87), T89)
FLATTEN1_IN_GA(cons(cons(cons(T103, T104), T105), T106), T108) → FLATTEN1_IN_GA(cons(T103, cons(T104, cons(T105, T106))), T108)
R is empty.
The argument filtering Pi contains the following mapping:
cons(
x1,
x2) =
cons(
x1,
x2)
atom(
x1) =
atom(
x1)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN1_IN_GA(
x1,
x2) =
FLATTEN1_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(7) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN1_IN_GA(cons(atom(T8), cons(cons(T51, T52), T53))) → FLATTEN1_IN_GA(cons(T51, cons(T52, T53)))
FLATTEN1_IN_GA(cons(atom(T8), cons(atom(T29), T30))) → FLATTEN1_IN_GA(T30)
FLATTEN1_IN_GA(cons(cons(atom(T85), T86), T87)) → FLATTEN1_IN_GA(cons(T86, T87))
FLATTEN1_IN_GA(cons(cons(cons(T103, T104), T105), T106)) → FLATTEN1_IN_GA(cons(T103, cons(T104, cons(T105, T106))))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(9) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
FLATTEN1_IN_GA(cons(atom(T8), cons(cons(T51, T52), T53))) → FLATTEN1_IN_GA(cons(T51, cons(T52, T53)))
FLATTEN1_IN_GA(cons(atom(T8), cons(atom(T29), T30))) → FLATTEN1_IN_GA(T30)
FLATTEN1_IN_GA(cons(cons(atom(T85), T86), T87)) → FLATTEN1_IN_GA(cons(T86, T87))
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(FLATTEN1_IN_GA(x1)) = 2·x1
POL(atom(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN1_IN_GA(cons(cons(cons(T103, T104), T105), T106)) → FLATTEN1_IN_GA(cons(T103, cons(T104, cons(T105, T106))))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
FLATTEN1_IN_GA(cons(cons(cons(T103, T104), T105), T106)) → FLATTEN1_IN_GA(cons(T103, cons(T104, cons(T105, T106))))
Used ordering: Polynomial interpretation [POLO]:
POL(FLATTEN1_IN_GA(x1)) = 2·x1
POL(cons(x1, x2)) = 2 + 2·x1 + x2
(12) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) YES