(0) Obligation:
Clauses:
flatten(atom(X), .(X, [])).
flatten(cons(atom(X), U), .(X, Y)) :- flatten(U, Y).
flatten(cons(cons(U, V), W), X) :- flatten(cons(U, cons(V, W)), X).
Queries:
flatten(g,a).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flatten_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x2,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x1,
x2,
x3,
x5)
.(
x1,
x2) =
.(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x2,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x1,
x2,
x3,
x5)
.(
x1,
x2) =
.(
x1,
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → U1_GA(X, U, Y, flatten_in_ga(U, Y))
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → FLATTEN_IN_GA(U, Y)
FLATTEN_IN_GA(cons(cons(U, V), W), X) → U2_GA(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
FLATTEN_IN_GA(cons(cons(U, V), W), X) → FLATTEN_IN_GA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x2,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x1,
x2,
x3,
x5)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4) =
U1_GA(
x1,
x2,
x4)
U2_GA(
x1,
x2,
x3,
x4,
x5) =
U2_GA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → U1_GA(X, U, Y, flatten_in_ga(U, Y))
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → FLATTEN_IN_GA(U, Y)
FLATTEN_IN_GA(cons(cons(U, V), W), X) → U2_GA(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
FLATTEN_IN_GA(cons(cons(U, V), W), X) → FLATTEN_IN_GA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x2,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x1,
x2,
x3,
x5)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4) =
U1_GA(
x1,
x2,
x4)
U2_GA(
x1,
x2,
x3,
x4,
x5) =
U2_GA(
x1,
x2,
x3,
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(cons(U, V), W), X) → FLATTEN_IN_GA(cons(U, cons(V, W)), X)
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → FLATTEN_IN_GA(U, Y)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x2,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x1,
x2,
x3,
x5)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(cons(U, V), W), X) → FLATTEN_IN_GA(cons(U, cons(V, W)), X)
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → FLATTEN_IN_GA(U, Y)
R is empty.
The argument filtering Pi contains the following mapping:
atom(
x1) =
atom(
x1)
cons(
x1,
x2) =
cons(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(cons(U, V), W)) → FLATTEN_IN_GA(cons(U, cons(V, W)))
FLATTEN_IN_GA(cons(atom(X), U)) → FLATTEN_IN_GA(U)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flatten_in: (b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x5)
.(
x1,
x2) =
.(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(12) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x5)
.(
x1,
x2) =
.(
x1,
x2)
(13) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → U1_GA(X, U, Y, flatten_in_ga(U, Y))
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → FLATTEN_IN_GA(U, Y)
FLATTEN_IN_GA(cons(cons(U, V), W), X) → U2_GA(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
FLATTEN_IN_GA(cons(cons(U, V), W), X) → FLATTEN_IN_GA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x5)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4) =
U1_GA(
x1,
x4)
U2_GA(
x1,
x2,
x3,
x4,
x5) =
U2_GA(
x5)
We have to consider all (P,R,Pi)-chains
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → U1_GA(X, U, Y, flatten_in_ga(U, Y))
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → FLATTEN_IN_GA(U, Y)
FLATTEN_IN_GA(cons(cons(U, V), W), X) → U2_GA(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
FLATTEN_IN_GA(cons(cons(U, V), W), X) → FLATTEN_IN_GA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x5)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4) =
U1_GA(
x1,
x4)
U2_GA(
x1,
x2,
x3,
x4,
x5) =
U2_GA(
x5)
We have to consider all (P,R,Pi)-chains
(15) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(cons(U, V), W), X) → FLATTEN_IN_GA(cons(U, cons(V, W)), X)
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → FLATTEN_IN_GA(U, Y)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), .(X, [])) → flatten_out_ga(atom(X), .(X, []))
flatten_in_ga(cons(atom(X), U), .(X, Y)) → U1_ga(X, U, Y, flatten_in_ga(U, Y))
flatten_in_ga(cons(cons(U, V), W), X) → U2_ga(U, V, W, X, flatten_in_ga(cons(U, cons(V, W)), X))
U2_ga(U, V, W, X, flatten_out_ga(cons(U, cons(V, W)), X)) → flatten_out_ga(cons(cons(U, V), W), X)
U1_ga(X, U, Y, flatten_out_ga(U, Y)) → flatten_out_ga(cons(atom(X), U), .(X, Y))
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom(
x1)
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x1,
x4)
U2_ga(
x1,
x2,
x3,
x4,
x5) =
U2_ga(
x5)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(cons(U, V), W), X) → FLATTEN_IN_GA(cons(U, cons(V, W)), X)
FLATTEN_IN_GA(cons(atom(X), U), .(X, Y)) → FLATTEN_IN_GA(U, Y)
R is empty.
The argument filtering Pi contains the following mapping:
atom(
x1) =
atom(
x1)
cons(
x1,
x2) =
cons(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(cons(cons(U, V), W)) → FLATTEN_IN_GA(cons(U, cons(V, W)))
FLATTEN_IN_GA(cons(atom(X), U)) → FLATTEN_IN_GA(U)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
FLATTEN_IN_GA(cons(cons(U, V), W)) → FLATTEN_IN_GA(cons(U, cons(V, W)))
FLATTEN_IN_GA(cons(atom(X), U)) → FLATTEN_IN_GA(U)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(FLATTEN_IN_GA(x1)) = 2·x1
POL(atom(x1)) = x1
POL(cons(x1, x2)) = 2 + 2·x1 + x2
(22) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(23) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(24) TRUE