(0) Obligation:
Clauses:
countstack(empty, 0).
countstack(push(nil, T), X) :- countstack(T, X).
countstack(push(cons(U, V), T), s(X)) :- countstack(push(U, push(V, T)), X).
Queries:
countstack(g,a).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
countstack1(push(nil, push(nil, T16)), T18) :- countstack1(T16, T18).
countstack1(push(nil, push(cons(T35, T36), T37)), s(T39)) :- countstack1(push(T35, push(T36, T37)), T39).
countstack1(push(cons(nil, T64), T65), s(T67)) :- countstack1(push(T64, T65), T67).
countstack1(push(cons(cons(T80, T81), T82), T83), s(s(T85))) :- countstack1(push(T80, push(T81, push(T82, T83))), T85).
Clauses:
countstackc1(empty, 0).
countstackc1(push(nil, empty), 0).
countstackc1(push(nil, push(nil, T16)), T18) :- countstackc1(T16, T18).
countstackc1(push(nil, push(cons(T35, T36), T37)), s(T39)) :- countstackc1(push(T35, push(T36, T37)), T39).
countstackc1(push(cons(nil, T64), T65), s(T67)) :- countstackc1(push(T64, T65), T67).
countstackc1(push(cons(cons(T80, T81), T82), T83), s(s(T85))) :- countstackc1(push(T80, push(T81, push(T82, T83))), T85).
Afs:
countstack1(x1, x2) = countstack1(x1)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
countstack1_in: (b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
COUNTSTACK1_IN_GA(push(nil, push(nil, T16)), T18) → U1_GA(T16, T18, countstack1_in_ga(T16, T18))
COUNTSTACK1_IN_GA(push(nil, push(nil, T16)), T18) → COUNTSTACK1_IN_GA(T16, T18)
COUNTSTACK1_IN_GA(push(nil, push(cons(T35, T36), T37)), s(T39)) → U2_GA(T35, T36, T37, T39, countstack1_in_ga(push(T35, push(T36, T37)), T39))
COUNTSTACK1_IN_GA(push(nil, push(cons(T35, T36), T37)), s(T39)) → COUNTSTACK1_IN_GA(push(T35, push(T36, T37)), T39)
COUNTSTACK1_IN_GA(push(cons(nil, T64), T65), s(T67)) → U3_GA(T64, T65, T67, countstack1_in_ga(push(T64, T65), T67))
COUNTSTACK1_IN_GA(push(cons(nil, T64), T65), s(T67)) → COUNTSTACK1_IN_GA(push(T64, T65), T67)
COUNTSTACK1_IN_GA(push(cons(cons(T80, T81), T82), T83), s(s(T85))) → U4_GA(T80, T81, T82, T83, T85, countstack1_in_ga(push(T80, push(T81, push(T82, T83))), T85))
COUNTSTACK1_IN_GA(push(cons(cons(T80, T81), T82), T83), s(s(T85))) → COUNTSTACK1_IN_GA(push(T80, push(T81, push(T82, T83))), T85)
R is empty.
The argument filtering Pi contains the following mapping:
countstack1_in_ga(
x1,
x2) =
countstack1_in_ga(
x1)
push(
x1,
x2) =
push(
x1,
x2)
nil =
nil
cons(
x1,
x2) =
cons(
x1,
x2)
s(
x1) =
s(
x1)
COUNTSTACK1_IN_GA(
x1,
x2) =
COUNTSTACK1_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U2_GA(
x1,
x2,
x3,
x4,
x5) =
U2_GA(
x1,
x2,
x3,
x5)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x2,
x4)
U4_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
COUNTSTACK1_IN_GA(push(nil, push(nil, T16)), T18) → U1_GA(T16, T18, countstack1_in_ga(T16, T18))
COUNTSTACK1_IN_GA(push(nil, push(nil, T16)), T18) → COUNTSTACK1_IN_GA(T16, T18)
COUNTSTACK1_IN_GA(push(nil, push(cons(T35, T36), T37)), s(T39)) → U2_GA(T35, T36, T37, T39, countstack1_in_ga(push(T35, push(T36, T37)), T39))
COUNTSTACK1_IN_GA(push(nil, push(cons(T35, T36), T37)), s(T39)) → COUNTSTACK1_IN_GA(push(T35, push(T36, T37)), T39)
COUNTSTACK1_IN_GA(push(cons(nil, T64), T65), s(T67)) → U3_GA(T64, T65, T67, countstack1_in_ga(push(T64, T65), T67))
COUNTSTACK1_IN_GA(push(cons(nil, T64), T65), s(T67)) → COUNTSTACK1_IN_GA(push(T64, T65), T67)
COUNTSTACK1_IN_GA(push(cons(cons(T80, T81), T82), T83), s(s(T85))) → U4_GA(T80, T81, T82, T83, T85, countstack1_in_ga(push(T80, push(T81, push(T82, T83))), T85))
COUNTSTACK1_IN_GA(push(cons(cons(T80, T81), T82), T83), s(s(T85))) → COUNTSTACK1_IN_GA(push(T80, push(T81, push(T82, T83))), T85)
R is empty.
The argument filtering Pi contains the following mapping:
countstack1_in_ga(
x1,
x2) =
countstack1_in_ga(
x1)
push(
x1,
x2) =
push(
x1,
x2)
nil =
nil
cons(
x1,
x2) =
cons(
x1,
x2)
s(
x1) =
s(
x1)
COUNTSTACK1_IN_GA(
x1,
x2) =
COUNTSTACK1_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U2_GA(
x1,
x2,
x3,
x4,
x5) =
U2_GA(
x1,
x2,
x3,
x5)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x2,
x4)
U4_GA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GA(
x1,
x2,
x3,
x4,
x6)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
COUNTSTACK1_IN_GA(push(nil, push(cons(T35, T36), T37)), s(T39)) → COUNTSTACK1_IN_GA(push(T35, push(T36, T37)), T39)
COUNTSTACK1_IN_GA(push(nil, push(nil, T16)), T18) → COUNTSTACK1_IN_GA(T16, T18)
COUNTSTACK1_IN_GA(push(cons(nil, T64), T65), s(T67)) → COUNTSTACK1_IN_GA(push(T64, T65), T67)
COUNTSTACK1_IN_GA(push(cons(cons(T80, T81), T82), T83), s(s(T85))) → COUNTSTACK1_IN_GA(push(T80, push(T81, push(T82, T83))), T85)
R is empty.
The argument filtering Pi contains the following mapping:
push(
x1,
x2) =
push(
x1,
x2)
nil =
nil
cons(
x1,
x2) =
cons(
x1,
x2)
s(
x1) =
s(
x1)
COUNTSTACK1_IN_GA(
x1,
x2) =
COUNTSTACK1_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(7) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
COUNTSTACK1_IN_GA(push(nil, push(cons(T35, T36), T37))) → COUNTSTACK1_IN_GA(push(T35, push(T36, T37)))
COUNTSTACK1_IN_GA(push(nil, push(nil, T16))) → COUNTSTACK1_IN_GA(T16)
COUNTSTACK1_IN_GA(push(cons(nil, T64), T65)) → COUNTSTACK1_IN_GA(push(T64, T65))
COUNTSTACK1_IN_GA(push(cons(cons(T80, T81), T82), T83)) → COUNTSTACK1_IN_GA(push(T80, push(T81, push(T82, T83))))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(9) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
COUNTSTACK1_IN_GA(push(nil, push(cons(T35, T36), T37))) → COUNTSTACK1_IN_GA(push(T35, push(T36, T37)))
COUNTSTACK1_IN_GA(push(nil, push(nil, T16))) → COUNTSTACK1_IN_GA(T16)
COUNTSTACK1_IN_GA(push(cons(nil, T64), T65)) → COUNTSTACK1_IN_GA(push(T64, T65))
COUNTSTACK1_IN_GA(push(cons(cons(T80, T81), T82), T83)) → COUNTSTACK1_IN_GA(push(T80, push(T81, push(T82, T83))))
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(COUNTSTACK1_IN_GA(x1)) = 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(nil) = 0
POL(push(x1, x2)) = 2·x1 + x2
(10) Obligation:
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(12) YES