(0) Obligation:

Clauses:

convert([], B, 0).
convert(.(0, XS), B, X) :- ','(convert(XS, B, Y), times(Y, B, X)).
convert(.(s(Y), XS), B, s(X)) :- convert(.(Y, XS), B, X).
plus(0, Y, Y).
plus(s(X), Y, s(Z)) :- plus(X, Y, Z).
times(0, Y, 0).
times(s(X), Y, Z) :- ','(times(X, Y, U), plus(Y, U, Z)).

Queries:

convert(g,g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
convert_in: (b,b,f)
times_in: (b,b,f)
plus_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(0, XS), B, X) → U1_GGA(XS, B, X, convert_in_gga(XS, B, Y))
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → U3_GGA(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → U2_GGA(XS, B, X, times_in_gga(Y, B, X))
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → TIMES_IN_GGA(Y, B, X)
TIMES_IN_GGA(s(X), Y, Z) → U5_GGA(X, Y, Z, times_in_gga(X, Y, U))
TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → U6_GGA(X, Y, Z, plus_in_gga(Y, U, Z))
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → PLUS_IN_GGA(Y, U, Z)
PLUS_IN_GGA(s(X), Y, s(Z)) → U4_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
CONVERT_IN_GGA(x1, x2, x3)  =  CONVERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x2, x4)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x5)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)
PLUS_IN_GGA(x1, x2, x3)  =  PLUS_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(0, XS), B, X) → U1_GGA(XS, B, X, convert_in_gga(XS, B, Y))
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → U3_GGA(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → U2_GGA(XS, B, X, times_in_gga(Y, B, X))
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → TIMES_IN_GGA(Y, B, X)
TIMES_IN_GGA(s(X), Y, Z) → U5_GGA(X, Y, Z, times_in_gga(X, Y, U))
TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → U6_GGA(X, Y, Z, plus_in_gga(Y, U, Z))
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → PLUS_IN_GGA(Y, U, Z)
PLUS_IN_GGA(s(X), Y, s(Z)) → U4_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
CONVERT_IN_GGA(x1, x2, x3)  =  CONVERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x2, x4)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x5)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)
PLUS_IN_GGA(x1, x2, x3)  =  PLUS_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 8 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
PLUS_IN_GGA(x1, x2, x3)  =  PLUS_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
PLUS_IN_GGA(x1, x2, x3)  =  PLUS_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)
    The graph contains the following edges 1 > 1, 2 >= 2

(13) TRUE

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(s(X), Y) → TIMES_IN_GGA(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • TIMES_IN_GGA(s(X), Y) → TIMES_IN_GGA(X, Y)
    The graph contains the following edges 1 > 1, 2 >= 2

(20) TRUE

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
CONVERT_IN_GGA(x1, x2, x3)  =  CONVERT_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
0  =  0
s(x1)  =  s(x1)
CONVERT_IN_GGA(x1, x2, x3)  =  CONVERT_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(s(Y), XS), B) → CONVERT_IN_GGA(.(Y, XS), B)
CONVERT_IN_GGA(.(0, XS), B) → CONVERT_IN_GGA(XS, B)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

CONVERT_IN_GGA(.(s(Y), XS), B) → CONVERT_IN_GGA(.(Y, XS), B)
CONVERT_IN_GGA(.(0, XS), B) → CONVERT_IN_GGA(XS, B)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 2·x1 + 2·x2   
POL(0) = 0   
POL(CONVERT_IN_GGA(x1, x2)) = 2·x1 + x2   
POL(s(x1)) = 2·x1   

(27) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
convert_in: (b,b,f)
times_in: (b,b,f)
plus_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(29) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)

(30) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(0, XS), B, X) → U1_GGA(XS, B, X, convert_in_gga(XS, B, Y))
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → U3_GGA(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → U2_GGA(XS, B, X, times_in_gga(Y, B, X))
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → TIMES_IN_GGA(Y, B, X)
TIMES_IN_GGA(s(X), Y, Z) → U5_GGA(X, Y, Z, times_in_gga(X, Y, U))
TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → U6_GGA(X, Y, Z, plus_in_gga(Y, U, Z))
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → PLUS_IN_GGA(Y, U, Z)
PLUS_IN_GGA(s(X), Y, s(Z)) → U4_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
CONVERT_IN_GGA(x1, x2, x3)  =  CONVERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
PLUS_IN_GGA(x1, x2, x3)  =  PLUS_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(31) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(0, XS), B, X) → U1_GGA(XS, B, X, convert_in_gga(XS, B, Y))
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → U3_GGA(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → U2_GGA(XS, B, X, times_in_gga(Y, B, X))
U1_GGA(XS, B, X, convert_out_gga(XS, B, Y)) → TIMES_IN_GGA(Y, B, X)
TIMES_IN_GGA(s(X), Y, Z) → U5_GGA(X, Y, Z, times_in_gga(X, Y, U))
TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → U6_GGA(X, Y, Z, plus_in_gga(Y, U, Z))
U5_GGA(X, Y, Z, times_out_gga(X, Y, U)) → PLUS_IN_GGA(Y, U, Z)
PLUS_IN_GGA(s(X), Y, s(Z)) → U4_GGA(X, Y, Z, plus_in_gga(X, Y, Z))
PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
CONVERT_IN_GGA(x1, x2, x3)  =  CONVERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x1, x2, x4)
PLUS_IN_GGA(x1, x2, x3)  =  PLUS_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(32) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 8 less nodes.

(33) Complex Obligation (AND)

(34) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
PLUS_IN_GGA(x1, x2, x3)  =  PLUS_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(35) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PLUS_IN_GGA(s(X), Y, s(Z)) → PLUS_IN_GGA(X, Y, Z)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
PLUS_IN_GGA(x1, x2, x3)  =  PLUS_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(37) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(39) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PLUS_IN_GGA(s(X), Y) → PLUS_IN_GGA(X, Y)
    The graph contains the following edges 1 > 1, 2 >= 2

(40) TRUE

(41) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(42) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(43) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(s(X), Y, Z) → TIMES_IN_GGA(X, Y, U)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(44) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(s(X), Y) → TIMES_IN_GGA(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(46) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • TIMES_IN_GGA(s(X), Y) → TIMES_IN_GGA(X, Y)
    The graph contains the following edges 1 > 1, 2 >= 2

(47) TRUE

(48) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)

The TRS R consists of the following rules:

convert_in_gga([], B, 0) → convert_out_gga([], B, 0)
convert_in_gga(.(0, XS), B, X) → U1_gga(XS, B, X, convert_in_gga(XS, B, Y))
convert_in_gga(.(s(Y), XS), B, s(X)) → U3_gga(Y, XS, B, X, convert_in_gga(.(Y, XS), B, X))
U3_gga(Y, XS, B, X, convert_out_gga(.(Y, XS), B, X)) → convert_out_gga(.(s(Y), XS), B, s(X))
U1_gga(XS, B, X, convert_out_gga(XS, B, Y)) → U2_gga(XS, B, X, times_in_gga(Y, B, X))
times_in_gga(0, Y, 0) → times_out_gga(0, Y, 0)
times_in_gga(s(X), Y, Z) → U5_gga(X, Y, Z, times_in_gga(X, Y, U))
U5_gga(X, Y, Z, times_out_gga(X, Y, U)) → U6_gga(X, Y, Z, plus_in_gga(Y, U, Z))
plus_in_gga(0, Y, Y) → plus_out_gga(0, Y, Y)
plus_in_gga(s(X), Y, s(Z)) → U4_gga(X, Y, Z, plus_in_gga(X, Y, Z))
U4_gga(X, Y, Z, plus_out_gga(X, Y, Z)) → plus_out_gga(s(X), Y, s(Z))
U6_gga(X, Y, Z, plus_out_gga(Y, U, Z)) → times_out_gga(s(X), Y, Z)
U2_gga(XS, B, X, times_out_gga(Y, B, X)) → convert_out_gga(.(0, XS), B, X)

The argument filtering Pi contains the following mapping:
convert_in_gga(x1, x2, x3)  =  convert_in_gga(x1, x2)
[]  =  []
convert_out_gga(x1, x2, x3)  =  convert_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
0  =  0
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4, x5)  =  U3_gga(x1, x2, x3, x5)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x1, x2, x4)
plus_in_gga(x1, x2, x3)  =  plus_in_gga(x1, x2)
plus_out_gga(x1, x2, x3)  =  plus_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
CONVERT_IN_GGA(x1, x2, x3)  =  CONVERT_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(49) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(50) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(s(Y), XS), B, s(X)) → CONVERT_IN_GGA(.(Y, XS), B, X)
CONVERT_IN_GGA(.(0, XS), B, X) → CONVERT_IN_GGA(XS, B, Y)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
0  =  0
s(x1)  =  s(x1)
CONVERT_IN_GGA(x1, x2, x3)  =  CONVERT_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(51) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONVERT_IN_GGA(.(s(Y), XS), B) → CONVERT_IN_GGA(.(Y, XS), B)
CONVERT_IN_GGA(.(0, XS), B) → CONVERT_IN_GGA(XS, B)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(53) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

CONVERT_IN_GGA(.(s(Y), XS), B) → CONVERT_IN_GGA(.(Y, XS), B)
CONVERT_IN_GGA(.(0, XS), B) → CONVERT_IN_GGA(XS, B)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 2·x1 + 2·x2   
POL(0) = 0   
POL(CONVERT_IN_GGA(x1, x2)) = 2·x1 + x2   
POL(s(x1)) = 2·x1   

(54) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(55) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(56) TRUE