(0) Obligation:
Clauses:
conf(X) :- ','(del2(X, Z), ','(del(U, Y, Z), conf(Y))).
del2(X, Y) :- ','(del(U, X, Z), del(V, Z, Y)).
del(X, .(X, T), T).
del(X, .(H, T), .(H, T1)) :- del(X, T, T1).
s2l(s(X), .(Y, Xs)) :- s2l(X, Xs).
s2l(0, []).
goal(X) :- ','(s2l(X, XS), conf(XS)).
Queries:
conf(g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
del6(X72, .(T25, T26), .(T25, X73)) :- del6(X72, T26, X73).
del18(X147, .(X148, X149), .(X148, T46)) :- del18(X147, X149, T46).
del34(X261, .(T82, T84), .(T82, X262)) :- del34(X261, T84, X262).
conf19(T64) :- del34(X206, T64, X207).
conf19(T64) :- ','(delc34(T67, T64, T68), del34(X208, T68, X209)).
conf19(T54) :- ','(del2c29(T54, T56), del43(X175, X176, T56)).
conf19(T54) :- ','(del2c29(T54, T56), ','(delc43(T88, T89, T56), conf19(T89))).
del43(X324, .(X325, X326), .(X325, T99)) :- del43(X324, X326, T99).
conf1(T9) :- del6(X23, T9, X24).
conf1(T9) :- ','(delc6(T12, T9, T13), del6(X25, T13, X26)).
conf1(T9) :- ','(delc6(T12, T9, T13), ','(delc6(T31, T13, T32), del18(X4, X5, T32))).
conf1(T9) :- ','(delc6(T12, T9, T13), ','(delc6(T31, T13, T32), ','(delc18(T36, T37, T32), conf19(T37)))).
Clauses:
delc6(X53, .(X53, T20), T20).
delc6(X72, .(T25, T26), .(T25, X73)) :- delc6(X72, T26, X73).
delc18(X127, .(X127, T43), T43).
delc18(X147, .(X148, X149), .(X148, T46)) :- delc18(X147, X149, T46).
delc34(X242, .(X242, T77), T77).
delc34(X261, .(T82, T84), .(T82, X262)) :- delc34(X261, T84, X262).
confc19(T54) :- ','(del2c29(T54, T56), ','(delc43(T88, T89, T56), confc19(T89))).
delc43(X304, .(X304, T95), T95).
delc43(X324, .(X325, X326), .(X325, T99)) :- delc43(X324, X326, T99).
del2c29(T64, X209) :- ','(delc34(T67, T64, T68), delc34(X208, T68, X209)).
Afs:
conf1(x1) = conf1(x1)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
conf1_in: (b)
del6_in: (f,b,f)
delc6_in: (f,b,f)
del18_in: (f,f,b)
delc18_in: (f,f,b)
conf19_in: (b)
del34_in: (f,b,f)
delc34_in: (f,b,f)
del2c29_in: (b,f)
del43_in: (f,f,b)
delc43_in: (f,f,b)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
CONF1_IN_G(T9) → U12_G(T9, del6_in_aga(X23, T9, X24))
CONF1_IN_G(T9) → DEL6_IN_AGA(X23, T9, X24)
DEL6_IN_AGA(X72, .(T25, T26), .(T25, X73)) → U1_AGA(X72, T25, T26, X73, del6_in_aga(X72, T26, X73))
DEL6_IN_AGA(X72, .(T25, T26), .(T25, X73)) → DEL6_IN_AGA(X72, T26, X73)
CONF1_IN_G(T9) → U13_G(T9, delc6_in_aga(T12, T9, T13))
U13_G(T9, delc6_out_aga(T12, T9, T13)) → U14_G(T9, del6_in_aga(X25, T13, X26))
U13_G(T9, delc6_out_aga(T12, T9, T13)) → DEL6_IN_AGA(X25, T13, X26)
U13_G(T9, delc6_out_aga(T12, T9, T13)) → U15_G(T9, delc6_in_aga(T31, T13, T32))
U15_G(T9, delc6_out_aga(T31, T13, T32)) → U16_G(T9, del18_in_aag(X4, X5, T32))
U15_G(T9, delc6_out_aga(T31, T13, T32)) → DEL18_IN_AAG(X4, X5, T32)
DEL18_IN_AAG(X147, .(X148, X149), .(X148, T46)) → U2_AAG(X147, X148, X149, T46, del18_in_aag(X147, X149, T46))
DEL18_IN_AAG(X147, .(X148, X149), .(X148, T46)) → DEL18_IN_AAG(X147, X149, T46)
U15_G(T9, delc6_out_aga(T31, T13, T32)) → U17_G(T9, delc18_in_aag(T36, T37, T32))
U17_G(T9, delc18_out_aag(T36, T37, T32)) → U18_G(T9, conf19_in_g(T37))
U17_G(T9, delc18_out_aag(T36, T37, T32)) → CONF19_IN_G(T37)
CONF19_IN_G(T64) → U4_G(T64, del34_in_aga(X206, T64, X207))
CONF19_IN_G(T64) → DEL34_IN_AGA(X206, T64, X207)
DEL34_IN_AGA(X261, .(T82, T84), .(T82, X262)) → U3_AGA(X261, T82, T84, X262, del34_in_aga(X261, T84, X262))
DEL34_IN_AGA(X261, .(T82, T84), .(T82, X262)) → DEL34_IN_AGA(X261, T84, X262)
CONF19_IN_G(T64) → U5_G(T64, delc34_in_aga(T67, T64, T68))
U5_G(T64, delc34_out_aga(T67, T64, T68)) → U6_G(T64, del34_in_aga(X208, T68, X209))
U5_G(T64, delc34_out_aga(T67, T64, T68)) → DEL34_IN_AGA(X208, T68, X209)
CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → U8_G(T54, del43_in_aag(X175, X176, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → DEL43_IN_AAG(X175, X176, T56)
DEL43_IN_AAG(X324, .(X325, X326), .(X325, T99)) → U11_AAG(X324, X325, X326, T99, del43_in_aag(X324, X326, T99))
DEL43_IN_AAG(X324, .(X325, X326), .(X325, T99)) → DEL43_IN_AAG(X324, X326, T99)
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T88, T89, T56))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → U10_G(T54, conf19_in_g(T89))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → CONF19_IN_G(T89)
The TRS R consists of the following rules:
delc6_in_aga(X53, .(X53, T20), T20) → delc6_out_aga(X53, .(X53, T20), T20)
delc6_in_aga(X72, .(T25, T26), .(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, .(T25, T26), .(T25, X73))
delc18_in_aag(X127, .(X127, T43), T43) → delc18_out_aag(X127, .(X127, T43), T43)
delc18_in_aag(X147, .(X148, X149), .(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, .(X148, X149), .(X148, T46))
delc34_in_aga(X242, .(X242, T77), T77) → delc34_out_aga(X242, .(X242, T77), T77)
delc34_in_aga(X261, .(T82, T84), .(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, .(T82, T84), .(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, .(X304, T95), T95) → delc43_out_aag(X304, .(X304, T95), T95)
delc43_in_aag(X324, .(X325, X326), .(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, .(X325, X326), .(X325, T99))
The argument filtering Pi contains the following mapping:
del6_in_aga(
x1,
x2,
x3) =
del6_in_aga(
x2)
.(
x1,
x2) =
.(
x2)
delc6_in_aga(
x1,
x2,
x3) =
delc6_in_aga(
x2)
delc6_out_aga(
x1,
x2,
x3) =
delc6_out_aga(
x2,
x3)
U20_aga(
x1,
x2,
x3,
x4,
x5) =
U20_aga(
x3,
x5)
del18_in_aag(
x1,
x2,
x3) =
del18_in_aag(
x3)
delc18_in_aag(
x1,
x2,
x3) =
delc18_in_aag(
x3)
delc18_out_aag(
x1,
x2,
x3) =
delc18_out_aag(
x2,
x3)
U21_aag(
x1,
x2,
x3,
x4,
x5) =
U21_aag(
x4,
x5)
conf19_in_g(
x1) =
conf19_in_g(
x1)
del34_in_aga(
x1,
x2,
x3) =
del34_in_aga(
x2)
delc34_in_aga(
x1,
x2,
x3) =
delc34_in_aga(
x2)
delc34_out_aga(
x1,
x2,
x3) =
delc34_out_aga(
x2,
x3)
U22_aga(
x1,
x2,
x3,
x4,
x5) =
U22_aga(
x3,
x5)
del2c29_in_ga(
x1,
x2) =
del2c29_in_ga(
x1)
U27_ga(
x1,
x2,
x3) =
U27_ga(
x1,
x3)
U28_ga(
x1,
x2,
x3) =
U28_ga(
x1,
x3)
del2c29_out_ga(
x1,
x2) =
del2c29_out_ga(
x1,
x2)
del43_in_aag(
x1,
x2,
x3) =
del43_in_aag(
x3)
delc43_in_aag(
x1,
x2,
x3) =
delc43_in_aag(
x3)
delc43_out_aag(
x1,
x2,
x3) =
delc43_out_aag(
x2,
x3)
U26_aag(
x1,
x2,
x3,
x4,
x5) =
U26_aag(
x4,
x5)
CONF1_IN_G(
x1) =
CONF1_IN_G(
x1)
U12_G(
x1,
x2) =
U12_G(
x1,
x2)
DEL6_IN_AGA(
x1,
x2,
x3) =
DEL6_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3,
x4,
x5) =
U1_AGA(
x3,
x5)
U13_G(
x1,
x2) =
U13_G(
x1,
x2)
U14_G(
x1,
x2) =
U14_G(
x1,
x2)
U15_G(
x1,
x2) =
U15_G(
x1,
x2)
U16_G(
x1,
x2) =
U16_G(
x1,
x2)
DEL18_IN_AAG(
x1,
x2,
x3) =
DEL18_IN_AAG(
x3)
U2_AAG(
x1,
x2,
x3,
x4,
x5) =
U2_AAG(
x4,
x5)
U17_G(
x1,
x2) =
U17_G(
x1,
x2)
U18_G(
x1,
x2) =
U18_G(
x1,
x2)
CONF19_IN_G(
x1) =
CONF19_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
DEL34_IN_AGA(
x1,
x2,
x3) =
DEL34_IN_AGA(
x2)
U3_AGA(
x1,
x2,
x3,
x4,
x5) =
U3_AGA(
x3,
x5)
U5_G(
x1,
x2) =
U5_G(
x1,
x2)
U6_G(
x1,
x2) =
U6_G(
x1,
x2)
U7_G(
x1,
x2) =
U7_G(
x1,
x2)
U8_G(
x1,
x2) =
U8_G(
x1,
x2)
DEL43_IN_AAG(
x1,
x2,
x3) =
DEL43_IN_AAG(
x3)
U11_AAG(
x1,
x2,
x3,
x4,
x5) =
U11_AAG(
x4,
x5)
U9_G(
x1,
x2) =
U9_G(
x1,
x2)
U10_G(
x1,
x2) =
U10_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
CONF1_IN_G(T9) → U12_G(T9, del6_in_aga(X23, T9, X24))
CONF1_IN_G(T9) → DEL6_IN_AGA(X23, T9, X24)
DEL6_IN_AGA(X72, .(T25, T26), .(T25, X73)) → U1_AGA(X72, T25, T26, X73, del6_in_aga(X72, T26, X73))
DEL6_IN_AGA(X72, .(T25, T26), .(T25, X73)) → DEL6_IN_AGA(X72, T26, X73)
CONF1_IN_G(T9) → U13_G(T9, delc6_in_aga(T12, T9, T13))
U13_G(T9, delc6_out_aga(T12, T9, T13)) → U14_G(T9, del6_in_aga(X25, T13, X26))
U13_G(T9, delc6_out_aga(T12, T9, T13)) → DEL6_IN_AGA(X25, T13, X26)
U13_G(T9, delc6_out_aga(T12, T9, T13)) → U15_G(T9, delc6_in_aga(T31, T13, T32))
U15_G(T9, delc6_out_aga(T31, T13, T32)) → U16_G(T9, del18_in_aag(X4, X5, T32))
U15_G(T9, delc6_out_aga(T31, T13, T32)) → DEL18_IN_AAG(X4, X5, T32)
DEL18_IN_AAG(X147, .(X148, X149), .(X148, T46)) → U2_AAG(X147, X148, X149, T46, del18_in_aag(X147, X149, T46))
DEL18_IN_AAG(X147, .(X148, X149), .(X148, T46)) → DEL18_IN_AAG(X147, X149, T46)
U15_G(T9, delc6_out_aga(T31, T13, T32)) → U17_G(T9, delc18_in_aag(T36, T37, T32))
U17_G(T9, delc18_out_aag(T36, T37, T32)) → U18_G(T9, conf19_in_g(T37))
U17_G(T9, delc18_out_aag(T36, T37, T32)) → CONF19_IN_G(T37)
CONF19_IN_G(T64) → U4_G(T64, del34_in_aga(X206, T64, X207))
CONF19_IN_G(T64) → DEL34_IN_AGA(X206, T64, X207)
DEL34_IN_AGA(X261, .(T82, T84), .(T82, X262)) → U3_AGA(X261, T82, T84, X262, del34_in_aga(X261, T84, X262))
DEL34_IN_AGA(X261, .(T82, T84), .(T82, X262)) → DEL34_IN_AGA(X261, T84, X262)
CONF19_IN_G(T64) → U5_G(T64, delc34_in_aga(T67, T64, T68))
U5_G(T64, delc34_out_aga(T67, T64, T68)) → U6_G(T64, del34_in_aga(X208, T68, X209))
U5_G(T64, delc34_out_aga(T67, T64, T68)) → DEL34_IN_AGA(X208, T68, X209)
CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → U8_G(T54, del43_in_aag(X175, X176, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → DEL43_IN_AAG(X175, X176, T56)
DEL43_IN_AAG(X324, .(X325, X326), .(X325, T99)) → U11_AAG(X324, X325, X326, T99, del43_in_aag(X324, X326, T99))
DEL43_IN_AAG(X324, .(X325, X326), .(X325, T99)) → DEL43_IN_AAG(X324, X326, T99)
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T88, T89, T56))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → U10_G(T54, conf19_in_g(T89))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → CONF19_IN_G(T89)
The TRS R consists of the following rules:
delc6_in_aga(X53, .(X53, T20), T20) → delc6_out_aga(X53, .(X53, T20), T20)
delc6_in_aga(X72, .(T25, T26), .(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, .(T25, T26), .(T25, X73))
delc18_in_aag(X127, .(X127, T43), T43) → delc18_out_aag(X127, .(X127, T43), T43)
delc18_in_aag(X147, .(X148, X149), .(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, .(X148, X149), .(X148, T46))
delc34_in_aga(X242, .(X242, T77), T77) → delc34_out_aga(X242, .(X242, T77), T77)
delc34_in_aga(X261, .(T82, T84), .(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, .(T82, T84), .(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, .(X304, T95), T95) → delc43_out_aag(X304, .(X304, T95), T95)
delc43_in_aag(X324, .(X325, X326), .(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, .(X325, X326), .(X325, T99))
The argument filtering Pi contains the following mapping:
del6_in_aga(
x1,
x2,
x3) =
del6_in_aga(
x2)
.(
x1,
x2) =
.(
x2)
delc6_in_aga(
x1,
x2,
x3) =
delc6_in_aga(
x2)
delc6_out_aga(
x1,
x2,
x3) =
delc6_out_aga(
x2,
x3)
U20_aga(
x1,
x2,
x3,
x4,
x5) =
U20_aga(
x3,
x5)
del18_in_aag(
x1,
x2,
x3) =
del18_in_aag(
x3)
delc18_in_aag(
x1,
x2,
x3) =
delc18_in_aag(
x3)
delc18_out_aag(
x1,
x2,
x3) =
delc18_out_aag(
x2,
x3)
U21_aag(
x1,
x2,
x3,
x4,
x5) =
U21_aag(
x4,
x5)
conf19_in_g(
x1) =
conf19_in_g(
x1)
del34_in_aga(
x1,
x2,
x3) =
del34_in_aga(
x2)
delc34_in_aga(
x1,
x2,
x3) =
delc34_in_aga(
x2)
delc34_out_aga(
x1,
x2,
x3) =
delc34_out_aga(
x2,
x3)
U22_aga(
x1,
x2,
x3,
x4,
x5) =
U22_aga(
x3,
x5)
del2c29_in_ga(
x1,
x2) =
del2c29_in_ga(
x1)
U27_ga(
x1,
x2,
x3) =
U27_ga(
x1,
x3)
U28_ga(
x1,
x2,
x3) =
U28_ga(
x1,
x3)
del2c29_out_ga(
x1,
x2) =
del2c29_out_ga(
x1,
x2)
del43_in_aag(
x1,
x2,
x3) =
del43_in_aag(
x3)
delc43_in_aag(
x1,
x2,
x3) =
delc43_in_aag(
x3)
delc43_out_aag(
x1,
x2,
x3) =
delc43_out_aag(
x2,
x3)
U26_aag(
x1,
x2,
x3,
x4,
x5) =
U26_aag(
x4,
x5)
CONF1_IN_G(
x1) =
CONF1_IN_G(
x1)
U12_G(
x1,
x2) =
U12_G(
x1,
x2)
DEL6_IN_AGA(
x1,
x2,
x3) =
DEL6_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3,
x4,
x5) =
U1_AGA(
x3,
x5)
U13_G(
x1,
x2) =
U13_G(
x1,
x2)
U14_G(
x1,
x2) =
U14_G(
x1,
x2)
U15_G(
x1,
x2) =
U15_G(
x1,
x2)
U16_G(
x1,
x2) =
U16_G(
x1,
x2)
DEL18_IN_AAG(
x1,
x2,
x3) =
DEL18_IN_AAG(
x3)
U2_AAG(
x1,
x2,
x3,
x4,
x5) =
U2_AAG(
x4,
x5)
U17_G(
x1,
x2) =
U17_G(
x1,
x2)
U18_G(
x1,
x2) =
U18_G(
x1,
x2)
CONF19_IN_G(
x1) =
CONF19_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
DEL34_IN_AGA(
x1,
x2,
x3) =
DEL34_IN_AGA(
x2)
U3_AGA(
x1,
x2,
x3,
x4,
x5) =
U3_AGA(
x3,
x5)
U5_G(
x1,
x2) =
U5_G(
x1,
x2)
U6_G(
x1,
x2) =
U6_G(
x1,
x2)
U7_G(
x1,
x2) =
U7_G(
x1,
x2)
U8_G(
x1,
x2) =
U8_G(
x1,
x2)
DEL43_IN_AAG(
x1,
x2,
x3) =
DEL43_IN_AAG(
x3)
U11_AAG(
x1,
x2,
x3,
x4,
x5) =
U11_AAG(
x4,
x5)
U9_G(
x1,
x2) =
U9_G(
x1,
x2)
U10_G(
x1,
x2) =
U10_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 23 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL43_IN_AAG(X324, .(X325, X326), .(X325, T99)) → DEL43_IN_AAG(X324, X326, T99)
The TRS R consists of the following rules:
delc6_in_aga(X53, .(X53, T20), T20) → delc6_out_aga(X53, .(X53, T20), T20)
delc6_in_aga(X72, .(T25, T26), .(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, .(T25, T26), .(T25, X73))
delc18_in_aag(X127, .(X127, T43), T43) → delc18_out_aag(X127, .(X127, T43), T43)
delc18_in_aag(X147, .(X148, X149), .(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, .(X148, X149), .(X148, T46))
delc34_in_aga(X242, .(X242, T77), T77) → delc34_out_aga(X242, .(X242, T77), T77)
delc34_in_aga(X261, .(T82, T84), .(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, .(T82, T84), .(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, .(X304, T95), T95) → delc43_out_aag(X304, .(X304, T95), T95)
delc43_in_aag(X324, .(X325, X326), .(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, .(X325, X326), .(X325, T99))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
delc6_in_aga(
x1,
x2,
x3) =
delc6_in_aga(
x2)
delc6_out_aga(
x1,
x2,
x3) =
delc6_out_aga(
x2,
x3)
U20_aga(
x1,
x2,
x3,
x4,
x5) =
U20_aga(
x3,
x5)
delc18_in_aag(
x1,
x2,
x3) =
delc18_in_aag(
x3)
delc18_out_aag(
x1,
x2,
x3) =
delc18_out_aag(
x2,
x3)
U21_aag(
x1,
x2,
x3,
x4,
x5) =
U21_aag(
x4,
x5)
delc34_in_aga(
x1,
x2,
x3) =
delc34_in_aga(
x2)
delc34_out_aga(
x1,
x2,
x3) =
delc34_out_aga(
x2,
x3)
U22_aga(
x1,
x2,
x3,
x4,
x5) =
U22_aga(
x3,
x5)
del2c29_in_ga(
x1,
x2) =
del2c29_in_ga(
x1)
U27_ga(
x1,
x2,
x3) =
U27_ga(
x1,
x3)
U28_ga(
x1,
x2,
x3) =
U28_ga(
x1,
x3)
del2c29_out_ga(
x1,
x2) =
del2c29_out_ga(
x1,
x2)
delc43_in_aag(
x1,
x2,
x3) =
delc43_in_aag(
x3)
delc43_out_aag(
x1,
x2,
x3) =
delc43_out_aag(
x2,
x3)
U26_aag(
x1,
x2,
x3,
x4,
x5) =
U26_aag(
x4,
x5)
DEL43_IN_AAG(
x1,
x2,
x3) =
DEL43_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL43_IN_AAG(X324, .(X325, X326), .(X325, T99)) → DEL43_IN_AAG(X324, X326, T99)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
DEL43_IN_AAG(
x1,
x2,
x3) =
DEL43_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DEL43_IN_AAG(.(T99)) → DEL43_IN_AAG(T99)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DEL43_IN_AAG(.(T99)) → DEL43_IN_AAG(T99)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL34_IN_AGA(X261, .(T82, T84), .(T82, X262)) → DEL34_IN_AGA(X261, T84, X262)
The TRS R consists of the following rules:
delc6_in_aga(X53, .(X53, T20), T20) → delc6_out_aga(X53, .(X53, T20), T20)
delc6_in_aga(X72, .(T25, T26), .(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, .(T25, T26), .(T25, X73))
delc18_in_aag(X127, .(X127, T43), T43) → delc18_out_aag(X127, .(X127, T43), T43)
delc18_in_aag(X147, .(X148, X149), .(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, .(X148, X149), .(X148, T46))
delc34_in_aga(X242, .(X242, T77), T77) → delc34_out_aga(X242, .(X242, T77), T77)
delc34_in_aga(X261, .(T82, T84), .(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, .(T82, T84), .(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, .(X304, T95), T95) → delc43_out_aag(X304, .(X304, T95), T95)
delc43_in_aag(X324, .(X325, X326), .(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, .(X325, X326), .(X325, T99))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
delc6_in_aga(
x1,
x2,
x3) =
delc6_in_aga(
x2)
delc6_out_aga(
x1,
x2,
x3) =
delc6_out_aga(
x2,
x3)
U20_aga(
x1,
x2,
x3,
x4,
x5) =
U20_aga(
x3,
x5)
delc18_in_aag(
x1,
x2,
x3) =
delc18_in_aag(
x3)
delc18_out_aag(
x1,
x2,
x3) =
delc18_out_aag(
x2,
x3)
U21_aag(
x1,
x2,
x3,
x4,
x5) =
U21_aag(
x4,
x5)
delc34_in_aga(
x1,
x2,
x3) =
delc34_in_aga(
x2)
delc34_out_aga(
x1,
x2,
x3) =
delc34_out_aga(
x2,
x3)
U22_aga(
x1,
x2,
x3,
x4,
x5) =
U22_aga(
x3,
x5)
del2c29_in_ga(
x1,
x2) =
del2c29_in_ga(
x1)
U27_ga(
x1,
x2,
x3) =
U27_ga(
x1,
x3)
U28_ga(
x1,
x2,
x3) =
U28_ga(
x1,
x3)
del2c29_out_ga(
x1,
x2) =
del2c29_out_ga(
x1,
x2)
delc43_in_aag(
x1,
x2,
x3) =
delc43_in_aag(
x3)
delc43_out_aag(
x1,
x2,
x3) =
delc43_out_aag(
x2,
x3)
U26_aag(
x1,
x2,
x3,
x4,
x5) =
U26_aag(
x4,
x5)
DEL34_IN_AGA(
x1,
x2,
x3) =
DEL34_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL34_IN_AGA(X261, .(T82, T84), .(T82, X262)) → DEL34_IN_AGA(X261, T84, X262)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
DEL34_IN_AGA(
x1,
x2,
x3) =
DEL34_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DEL34_IN_AGA(.(T84)) → DEL34_IN_AGA(T84)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DEL34_IN_AGA(.(T84)) → DEL34_IN_AGA(T84)
The graph contains the following edges 1 > 1
(20) YES
(21) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T88, T89, T56))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → CONF19_IN_G(T89)
The TRS R consists of the following rules:
delc6_in_aga(X53, .(X53, T20), T20) → delc6_out_aga(X53, .(X53, T20), T20)
delc6_in_aga(X72, .(T25, T26), .(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, .(T25, T26), .(T25, X73))
delc18_in_aag(X127, .(X127, T43), T43) → delc18_out_aag(X127, .(X127, T43), T43)
delc18_in_aag(X147, .(X148, X149), .(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, .(X148, X149), .(X148, T46))
delc34_in_aga(X242, .(X242, T77), T77) → delc34_out_aga(X242, .(X242, T77), T77)
delc34_in_aga(X261, .(T82, T84), .(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, .(T82, T84), .(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, .(X304, T95), T95) → delc43_out_aag(X304, .(X304, T95), T95)
delc43_in_aag(X324, .(X325, X326), .(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, .(X325, X326), .(X325, T99))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
delc6_in_aga(
x1,
x2,
x3) =
delc6_in_aga(
x2)
delc6_out_aga(
x1,
x2,
x3) =
delc6_out_aga(
x2,
x3)
U20_aga(
x1,
x2,
x3,
x4,
x5) =
U20_aga(
x3,
x5)
delc18_in_aag(
x1,
x2,
x3) =
delc18_in_aag(
x3)
delc18_out_aag(
x1,
x2,
x3) =
delc18_out_aag(
x2,
x3)
U21_aag(
x1,
x2,
x3,
x4,
x5) =
U21_aag(
x4,
x5)
delc34_in_aga(
x1,
x2,
x3) =
delc34_in_aga(
x2)
delc34_out_aga(
x1,
x2,
x3) =
delc34_out_aga(
x2,
x3)
U22_aga(
x1,
x2,
x3,
x4,
x5) =
U22_aga(
x3,
x5)
del2c29_in_ga(
x1,
x2) =
del2c29_in_ga(
x1)
U27_ga(
x1,
x2,
x3) =
U27_ga(
x1,
x3)
U28_ga(
x1,
x2,
x3) =
U28_ga(
x1,
x3)
del2c29_out_ga(
x1,
x2) =
del2c29_out_ga(
x1,
x2)
delc43_in_aag(
x1,
x2,
x3) =
delc43_in_aag(
x3)
delc43_out_aag(
x1,
x2,
x3) =
delc43_out_aag(
x2,
x3)
U26_aag(
x1,
x2,
x3,
x4,
x5) =
U26_aag(
x4,
x5)
CONF19_IN_G(
x1) =
CONF19_IN_G(
x1)
U7_G(
x1,
x2) =
U7_G(
x1,
x2)
U9_G(
x1,
x2) =
U9_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(22) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(23) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T88, T89, T56))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → CONF19_IN_G(T89)
The TRS R consists of the following rules:
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
delc43_in_aag(X304, .(X304, T95), T95) → delc43_out_aag(X304, .(X304, T95), T95)
delc43_in_aag(X324, .(X325, X326), .(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, .(X325, X326), .(X325, T99))
delc34_in_aga(X242, .(X242, T77), T77) → delc34_out_aga(X242, .(X242, T77), T77)
delc34_in_aga(X261, .(T82, T84), .(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, .(T82, T84), .(T82, X262))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
delc34_in_aga(
x1,
x2,
x3) =
delc34_in_aga(
x2)
delc34_out_aga(
x1,
x2,
x3) =
delc34_out_aga(
x2,
x3)
U22_aga(
x1,
x2,
x3,
x4,
x5) =
U22_aga(
x3,
x5)
del2c29_in_ga(
x1,
x2) =
del2c29_in_ga(
x1)
U27_ga(
x1,
x2,
x3) =
U27_ga(
x1,
x3)
U28_ga(
x1,
x2,
x3) =
U28_ga(
x1,
x3)
del2c29_out_ga(
x1,
x2) =
del2c29_out_ga(
x1,
x2)
delc43_in_aag(
x1,
x2,
x3) =
delc43_in_aag(
x3)
delc43_out_aag(
x1,
x2,
x3) =
delc43_out_aag(
x2,
x3)
U26_aag(
x1,
x2,
x3,
x4,
x5) =
U26_aag(
x4,
x5)
CONF19_IN_G(
x1) =
CONF19_IN_G(
x1)
U7_G(
x1,
x2) =
U7_G(
x1,
x2)
U9_G(
x1,
x2) =
U9_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(24) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54))
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T56))
U9_G(T54, delc43_out_aag(T89, T56)) → CONF19_IN_G(T89)
The TRS R consists of the following rules:
del2c29_in_ga(T64) → U27_ga(T64, delc34_in_aga(T64))
delc43_in_aag(T95) → delc43_out_aag(.(T95), T95)
delc43_in_aag(.(T99)) → U26_aag(T99, delc43_in_aag(T99))
U27_ga(T64, delc34_out_aga(T64, T68)) → U28_ga(T64, delc34_in_aga(T68))
U26_aag(T99, delc43_out_aag(X326, T99)) → delc43_out_aag(.(X326), .(T99))
delc34_in_aga(.(T77)) → delc34_out_aga(.(T77), T77)
delc34_in_aga(.(T84)) → U22_aga(T84, delc34_in_aga(T84))
U28_ga(T64, delc34_out_aga(T68, X209)) → del2c29_out_ga(T64, X209)
U22_aga(T84, delc34_out_aga(T84, X262)) → delc34_out_aga(.(T84), .(X262))
The set Q consists of the following terms:
del2c29_in_ga(x0)
delc43_in_aag(x0)
U27_ga(x0, x1)
U26_aag(x0, x1)
delc34_in_aga(x0)
U28_ga(x0, x1)
U22_aga(x0, x1)
We have to consider all (P,Q,R)-chains.
(26) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T56))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(CONF19_IN_G(x1)) = | 0 | + | | · | x1 |
POL(U7_G(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(del2c29_in_ga(x1)) = | | + | | · | x1 |
POL(del2c29_out_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U9_G(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(delc43_in_aag(x1)) = | | + | | · | x1 |
POL(delc43_out_aag(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U27_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(delc34_in_aga(x1)) = | | + | | · | x1 |
POL(U26_aag(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(delc34_out_aga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U22_aga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U28_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
del2c29_in_ga(T64) → U27_ga(T64, delc34_in_aga(T64))
delc43_in_aag(T95) → delc43_out_aag(.(T95), T95)
delc43_in_aag(.(T99)) → U26_aag(T99, delc43_in_aag(T99))
delc34_in_aga(.(T77)) → delc34_out_aga(.(T77), T77)
delc34_in_aga(.(T84)) → U22_aga(T84, delc34_in_aga(T84))
U27_ga(T64, delc34_out_aga(T64, T68)) → U28_ga(T64, delc34_in_aga(T68))
U26_aag(T99, delc43_out_aag(X326, T99)) → delc43_out_aag(.(X326), .(T99))
U28_ga(T64, delc34_out_aga(T68, X209)) → del2c29_out_ga(T64, X209)
U22_aga(T84, delc34_out_aga(T84, X262)) → delc34_out_aga(.(T84), .(X262))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54))
U9_G(T54, delc43_out_aag(T89, T56)) → CONF19_IN_G(T89)
The TRS R consists of the following rules:
del2c29_in_ga(T64) → U27_ga(T64, delc34_in_aga(T64))
delc43_in_aag(T95) → delc43_out_aag(.(T95), T95)
delc43_in_aag(.(T99)) → U26_aag(T99, delc43_in_aag(T99))
U27_ga(T64, delc34_out_aga(T64, T68)) → U28_ga(T64, delc34_in_aga(T68))
U26_aag(T99, delc43_out_aag(X326, T99)) → delc43_out_aag(.(X326), .(T99))
delc34_in_aga(.(T77)) → delc34_out_aga(.(T77), T77)
delc34_in_aga(.(T84)) → U22_aga(T84, delc34_in_aga(T84))
U28_ga(T64, delc34_out_aga(T68, X209)) → del2c29_out_ga(T64, X209)
U22_aga(T84, delc34_out_aga(T84, X262)) → delc34_out_aga(.(T84), .(X262))
The set Q consists of the following terms:
del2c29_in_ga(x0)
delc43_in_aag(x0)
U27_ga(x0, x1)
U26_aag(x0, x1)
delc34_in_aga(x0)
U28_ga(x0, x1)
U22_aga(x0, x1)
We have to consider all (P,Q,R)-chains.
(28) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(29) TRUE
(30) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL18_IN_AAG(X147, .(X148, X149), .(X148, T46)) → DEL18_IN_AAG(X147, X149, T46)
The TRS R consists of the following rules:
delc6_in_aga(X53, .(X53, T20), T20) → delc6_out_aga(X53, .(X53, T20), T20)
delc6_in_aga(X72, .(T25, T26), .(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, .(T25, T26), .(T25, X73))
delc18_in_aag(X127, .(X127, T43), T43) → delc18_out_aag(X127, .(X127, T43), T43)
delc18_in_aag(X147, .(X148, X149), .(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, .(X148, X149), .(X148, T46))
delc34_in_aga(X242, .(X242, T77), T77) → delc34_out_aga(X242, .(X242, T77), T77)
delc34_in_aga(X261, .(T82, T84), .(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, .(T82, T84), .(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, .(X304, T95), T95) → delc43_out_aag(X304, .(X304, T95), T95)
delc43_in_aag(X324, .(X325, X326), .(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, .(X325, X326), .(X325, T99))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
delc6_in_aga(
x1,
x2,
x3) =
delc6_in_aga(
x2)
delc6_out_aga(
x1,
x2,
x3) =
delc6_out_aga(
x2,
x3)
U20_aga(
x1,
x2,
x3,
x4,
x5) =
U20_aga(
x3,
x5)
delc18_in_aag(
x1,
x2,
x3) =
delc18_in_aag(
x3)
delc18_out_aag(
x1,
x2,
x3) =
delc18_out_aag(
x2,
x3)
U21_aag(
x1,
x2,
x3,
x4,
x5) =
U21_aag(
x4,
x5)
delc34_in_aga(
x1,
x2,
x3) =
delc34_in_aga(
x2)
delc34_out_aga(
x1,
x2,
x3) =
delc34_out_aga(
x2,
x3)
U22_aga(
x1,
x2,
x3,
x4,
x5) =
U22_aga(
x3,
x5)
del2c29_in_ga(
x1,
x2) =
del2c29_in_ga(
x1)
U27_ga(
x1,
x2,
x3) =
U27_ga(
x1,
x3)
U28_ga(
x1,
x2,
x3) =
U28_ga(
x1,
x3)
del2c29_out_ga(
x1,
x2) =
del2c29_out_ga(
x1,
x2)
delc43_in_aag(
x1,
x2,
x3) =
delc43_in_aag(
x3)
delc43_out_aag(
x1,
x2,
x3) =
delc43_out_aag(
x2,
x3)
U26_aag(
x1,
x2,
x3,
x4,
x5) =
U26_aag(
x4,
x5)
DEL18_IN_AAG(
x1,
x2,
x3) =
DEL18_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(31) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(32) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL18_IN_AAG(X147, .(X148, X149), .(X148, T46)) → DEL18_IN_AAG(X147, X149, T46)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
DEL18_IN_AAG(
x1,
x2,
x3) =
DEL18_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(33) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DEL18_IN_AAG(.(T46)) → DEL18_IN_AAG(T46)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(35) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DEL18_IN_AAG(.(T46)) → DEL18_IN_AAG(T46)
The graph contains the following edges 1 > 1
(36) YES
(37) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL6_IN_AGA(X72, .(T25, T26), .(T25, X73)) → DEL6_IN_AGA(X72, T26, X73)
The TRS R consists of the following rules:
delc6_in_aga(X53, .(X53, T20), T20) → delc6_out_aga(X53, .(X53, T20), T20)
delc6_in_aga(X72, .(T25, T26), .(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, .(T25, T26), .(T25, X73))
delc18_in_aag(X127, .(X127, T43), T43) → delc18_out_aag(X127, .(X127, T43), T43)
delc18_in_aag(X147, .(X148, X149), .(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, .(X148, X149), .(X148, T46))
delc34_in_aga(X242, .(X242, T77), T77) → delc34_out_aga(X242, .(X242, T77), T77)
delc34_in_aga(X261, .(T82, T84), .(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, .(T82, T84), .(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, .(X304, T95), T95) → delc43_out_aag(X304, .(X304, T95), T95)
delc43_in_aag(X324, .(X325, X326), .(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, .(X325, X326), .(X325, T99))
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
delc6_in_aga(
x1,
x2,
x3) =
delc6_in_aga(
x2)
delc6_out_aga(
x1,
x2,
x3) =
delc6_out_aga(
x2,
x3)
U20_aga(
x1,
x2,
x3,
x4,
x5) =
U20_aga(
x3,
x5)
delc18_in_aag(
x1,
x2,
x3) =
delc18_in_aag(
x3)
delc18_out_aag(
x1,
x2,
x3) =
delc18_out_aag(
x2,
x3)
U21_aag(
x1,
x2,
x3,
x4,
x5) =
U21_aag(
x4,
x5)
delc34_in_aga(
x1,
x2,
x3) =
delc34_in_aga(
x2)
delc34_out_aga(
x1,
x2,
x3) =
delc34_out_aga(
x2,
x3)
U22_aga(
x1,
x2,
x3,
x4,
x5) =
U22_aga(
x3,
x5)
del2c29_in_ga(
x1,
x2) =
del2c29_in_ga(
x1)
U27_ga(
x1,
x2,
x3) =
U27_ga(
x1,
x3)
U28_ga(
x1,
x2,
x3) =
U28_ga(
x1,
x3)
del2c29_out_ga(
x1,
x2) =
del2c29_out_ga(
x1,
x2)
delc43_in_aag(
x1,
x2,
x3) =
delc43_in_aag(
x3)
delc43_out_aag(
x1,
x2,
x3) =
delc43_out_aag(
x2,
x3)
U26_aag(
x1,
x2,
x3,
x4,
x5) =
U26_aag(
x4,
x5)
DEL6_IN_AGA(
x1,
x2,
x3) =
DEL6_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(38) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(39) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL6_IN_AGA(X72, .(T25, T26), .(T25, X73)) → DEL6_IN_AGA(X72, T26, X73)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
DEL6_IN_AGA(
x1,
x2,
x3) =
DEL6_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(40) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DEL6_IN_AGA(.(T26)) → DEL6_IN_AGA(T26)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(42) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DEL6_IN_AGA(.(T26)) → DEL6_IN_AGA(T26)
The graph contains the following edges 1 > 1
(43) YES