(0) Obligation:

Clauses:

cnfequiv(X, Y) :- ','(transform(X, Z), cnfequiv(Z, Y)).
cnfequiv(X, X).
transform(n(n(X)), X).
transform(n(a(X, Y)), o(n(X), n(Y))).
transform(n(o(X, Y)), a(n(X), n(Y))).
transform(o(X, a(Y, Z)), a(o(X, Y), o(X, Z))).
transform(o(a(X, Y), Z), a(o(X, Z), o(Y, Z))).
transform(o(X1, Y), o(X2, Y)) :- transform(X1, X2).
transform(o(X, Y1), o(X, Y2)) :- transform(Y1, Y2).
transform(a(X1, Y), a(X2, Y)) :- transform(X1, X2).
transform(a(X, Y1), a(X, Y2)) :- transform(Y1, Y2).
transform(n(X1), n(X2)) :- transform(X1, X2).

Queries:

cnfequiv(g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

transform29(o(T157, T158), o(X201, T158)) :- transform29(T157, X201).
transform29(o(T169, T170), o(T169, X226)) :- transform29(T170, X226).
transform29(a(T181, T182), a(X251, T182)) :- transform29(T181, X251).
transform29(a(T193, T194), a(T193, X276)) :- transform29(T194, X276).
transform29(n(T199), n(X290)) :- transform29(T199, X290).
cnfequiv1(n(n(T12)), T7) :- cnfequiv1(T12, T7).
cnfequiv1(n(a(T23, T24)), T7) :- cnfequiv1(o(n(T23), n(T24)), T7).
cnfequiv1(n(o(T36, T37)), T7) :- cnfequiv1(a(n(T36), n(T37)), T7).
cnfequiv1(o(T53, a(T54, T55)), T7) :- cnfequiv1(a(o(T53, T54), o(T53, T55)), T7).
cnfequiv1(o(a(T72, T73), T74), T7) :- cnfequiv1(a(o(T72, T74), o(T73, T74)), T7).
cnfequiv1(o(T87, T88), T7) :- transform29(T87, X108).
cnfequiv1(o(T87, T88), T7) :- ','(transformc29(T87, T91), cnfequiv1(o(T91, T88), T7)).
cnfequiv1(o(T213, T214), T7) :- transform29(T214, X317).
cnfequiv1(o(T213, T214), T7) :- ','(transformc29(T214, T217), cnfequiv1(o(T213, T217), T7)).
cnfequiv1(a(T231, T232), T7) :- transform29(T231, X347).
cnfequiv1(a(T231, T232), T7) :- ','(transformc29(T231, T235), cnfequiv1(a(T235, T232), T7)).
cnfequiv1(a(T249, T250), T7) :- transform29(T250, X377).
cnfequiv1(a(T249, T250), T7) :- ','(transformc29(T250, T253), cnfequiv1(a(T249, T253), T7)).
cnfequiv1(n(T263), T7) :- transform29(T263, X402).
cnfequiv1(n(T263), T7) :- ','(transformc29(T263, T266), cnfequiv1(n(T266), T7)).

Clauses:

cnfequivc1(n(n(T12)), T7) :- cnfequivc1(T12, T7).
cnfequivc1(n(a(T23, T24)), T7) :- cnfequivc1(o(n(T23), n(T24)), T7).
cnfequivc1(n(o(T36, T37)), T7) :- cnfequivc1(a(n(T36), n(T37)), T7).
cnfequivc1(o(T53, a(T54, T55)), T7) :- cnfequivc1(a(o(T53, T54), o(T53, T55)), T7).
cnfequivc1(o(a(T72, T73), T74), T7) :- cnfequivc1(a(o(T72, T74), o(T73, T74)), T7).
cnfequivc1(o(T87, T88), T7) :- ','(transformc29(T87, T91), cnfequivc1(o(T91, T88), T7)).
cnfequivc1(o(T213, T214), T7) :- ','(transformc29(T214, T217), cnfequivc1(o(T213, T217), T7)).
cnfequivc1(a(T231, T232), T7) :- ','(transformc29(T231, T235), cnfequivc1(a(T235, T232), T7)).
cnfequivc1(a(T249, T250), T7) :- ','(transformc29(T250, T253), cnfequivc1(a(T249, T253), T7)).
cnfequivc1(n(T263), T7) :- ','(transformc29(T263, T266), cnfequivc1(n(T266), T7)).
cnfequivc1(T273, T273).
transformc29(n(n(T98)), T98).
transformc29(n(a(T107, T108)), o(n(T107), n(T108))).
transformc29(n(o(T117, T118)), a(n(T117), n(T118))).
transformc29(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133))).
transformc29(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148))).
transformc29(o(T157, T158), o(X201, T158)) :- transformc29(T157, X201).
transformc29(o(T169, T170), o(T169, X226)) :- transformc29(T170, X226).
transformc29(a(T181, T182), a(X251, T182)) :- transformc29(T181, X251).
transformc29(a(T193, T194), a(T193, X276)) :- transformc29(T194, X276).
transformc29(n(T199), n(X290)) :- transformc29(T199, X290).

Afs:

cnfequiv1(x1, x2)  =  cnfequiv1(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
cnfequiv1_in: (b,f)
transform29_in: (b,f)
transformc29_in: (b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(n(n(T12)), T7) → U6_GA(T12, T7, cnfequiv1_in_ga(T12, T7))
CNFEQUIV1_IN_GA(n(n(T12)), T7) → CNFEQUIV1_IN_GA(T12, T7)
CNFEQUIV1_IN_GA(n(a(T23, T24)), T7) → U7_GA(T23, T24, T7, cnfequiv1_in_ga(o(n(T23), n(T24)), T7))
CNFEQUIV1_IN_GA(n(a(T23, T24)), T7) → CNFEQUIV1_IN_GA(o(n(T23), n(T24)), T7)
CNFEQUIV1_IN_GA(n(o(T36, T37)), T7) → U8_GA(T36, T37, T7, cnfequiv1_in_ga(a(n(T36), n(T37)), T7))
CNFEQUIV1_IN_GA(n(o(T36, T37)), T7) → CNFEQUIV1_IN_GA(a(n(T36), n(T37)), T7)
CNFEQUIV1_IN_GA(o(T53, a(T54, T55)), T7) → U9_GA(T53, T54, T55, T7, cnfequiv1_in_ga(a(o(T53, T54), o(T53, T55)), T7))
CNFEQUIV1_IN_GA(o(T53, a(T54, T55)), T7) → CNFEQUIV1_IN_GA(a(o(T53, T54), o(T53, T55)), T7)
CNFEQUIV1_IN_GA(o(a(T72, T73), T74), T7) → U10_GA(T72, T73, T74, T7, cnfequiv1_in_ga(a(o(T72, T74), o(T73, T74)), T7))
CNFEQUIV1_IN_GA(o(a(T72, T73), T74), T7) → CNFEQUIV1_IN_GA(a(o(T72, T74), o(T73, T74)), T7)
CNFEQUIV1_IN_GA(o(T87, T88), T7) → U11_GA(T87, T88, T7, transform29_in_ga(T87, X108))
CNFEQUIV1_IN_GA(o(T87, T88), T7) → TRANSFORM29_IN_GA(T87, X108)
TRANSFORM29_IN_GA(o(T157, T158), o(X201, T158)) → U1_GA(T157, T158, X201, transform29_in_ga(T157, X201))
TRANSFORM29_IN_GA(o(T157, T158), o(X201, T158)) → TRANSFORM29_IN_GA(T157, X201)
TRANSFORM29_IN_GA(o(T169, T170), o(T169, X226)) → U2_GA(T169, T170, X226, transform29_in_ga(T170, X226))
TRANSFORM29_IN_GA(o(T169, T170), o(T169, X226)) → TRANSFORM29_IN_GA(T170, X226)
TRANSFORM29_IN_GA(a(T181, T182), a(X251, T182)) → U3_GA(T181, T182, X251, transform29_in_ga(T181, X251))
TRANSFORM29_IN_GA(a(T181, T182), a(X251, T182)) → TRANSFORM29_IN_GA(T181, X251)
TRANSFORM29_IN_GA(a(T193, T194), a(T193, X276)) → U4_GA(T193, T194, X276, transform29_in_ga(T194, X276))
TRANSFORM29_IN_GA(a(T193, T194), a(T193, X276)) → TRANSFORM29_IN_GA(T194, X276)
TRANSFORM29_IN_GA(n(T199), n(X290)) → U5_GA(T199, X290, transform29_in_ga(T199, X290))
TRANSFORM29_IN_GA(n(T199), n(X290)) → TRANSFORM29_IN_GA(T199, X290)
CNFEQUIV1_IN_GA(o(T87, T88), T7) → U12_GA(T87, T88, T7, transformc29_in_ga(T87, T91))
U12_GA(T87, T88, T7, transformc29_out_ga(T87, T91)) → U13_GA(T87, T88, T7, cnfequiv1_in_ga(o(T91, T88), T7))
U12_GA(T87, T88, T7, transformc29_out_ga(T87, T91)) → CNFEQUIV1_IN_GA(o(T91, T88), T7)
CNFEQUIV1_IN_GA(o(T213, T214), T7) → U14_GA(T213, T214, T7, transform29_in_ga(T214, X317))
CNFEQUIV1_IN_GA(o(T213, T214), T7) → TRANSFORM29_IN_GA(T214, X317)
CNFEQUIV1_IN_GA(o(T213, T214), T7) → U15_GA(T213, T214, T7, transformc29_in_ga(T214, T217))
U15_GA(T213, T214, T7, transformc29_out_ga(T214, T217)) → U16_GA(T213, T214, T7, cnfequiv1_in_ga(o(T213, T217), T7))
U15_GA(T213, T214, T7, transformc29_out_ga(T214, T217)) → CNFEQUIV1_IN_GA(o(T213, T217), T7)
CNFEQUIV1_IN_GA(a(T231, T232), T7) → U17_GA(T231, T232, T7, transform29_in_ga(T231, X347))
CNFEQUIV1_IN_GA(a(T231, T232), T7) → TRANSFORM29_IN_GA(T231, X347)
CNFEQUIV1_IN_GA(a(T231, T232), T7) → U18_GA(T231, T232, T7, transformc29_in_ga(T231, T235))
U18_GA(T231, T232, T7, transformc29_out_ga(T231, T235)) → U19_GA(T231, T232, T7, cnfequiv1_in_ga(a(T235, T232), T7))
U18_GA(T231, T232, T7, transformc29_out_ga(T231, T235)) → CNFEQUIV1_IN_GA(a(T235, T232), T7)
CNFEQUIV1_IN_GA(a(T249, T250), T7) → U20_GA(T249, T250, T7, transform29_in_ga(T250, X377))
CNFEQUIV1_IN_GA(a(T249, T250), T7) → TRANSFORM29_IN_GA(T250, X377)
CNFEQUIV1_IN_GA(a(T249, T250), T7) → U21_GA(T249, T250, T7, transformc29_in_ga(T250, T253))
U21_GA(T249, T250, T7, transformc29_out_ga(T250, T253)) → U22_GA(T249, T250, T7, cnfequiv1_in_ga(a(T249, T253), T7))
U21_GA(T249, T250, T7, transformc29_out_ga(T250, T253)) → CNFEQUIV1_IN_GA(a(T249, T253), T7)
CNFEQUIV1_IN_GA(n(T263), T7) → U23_GA(T263, T7, transform29_in_ga(T263, X402))
CNFEQUIV1_IN_GA(n(T263), T7) → TRANSFORM29_IN_GA(T263, X402)
CNFEQUIV1_IN_GA(n(T263), T7) → U24_GA(T263, T7, transformc29_in_ga(T263, T266))
U24_GA(T263, T7, transformc29_out_ga(T263, T266)) → U25_GA(T263, T7, cnfequiv1_in_ga(n(T266), T7))
U24_GA(T263, T7, transformc29_out_ga(T263, T266)) → CNFEQUIV1_IN_GA(n(T266), T7)

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98)), T98) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108)), o(n(T107), n(T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118)), a(n(T117), n(T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148))) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158), o(X201, T158)) → U42_ga(T157, T158, X201, transformc29_in_ga(T157, X201))
transformc29_in_ga(o(T169, T170), o(T169, X226)) → U43_ga(T169, T170, X226, transformc29_in_ga(T170, X226))
transformc29_in_ga(a(T181, T182), a(X251, T182)) → U44_ga(T181, T182, X251, transformc29_in_ga(T181, X251))
transformc29_in_ga(a(T193, T194), a(T193, X276)) → U45_ga(T193, T194, X276, transformc29_in_ga(T194, X276))
transformc29_in_ga(n(T199), n(X290)) → U46_ga(T199, X290, transformc29_in_ga(T199, X290))
U46_ga(T199, X290, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, X276, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, X251, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, X226, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, X201, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The argument filtering Pi contains the following mapping:
cnfequiv1_in_ga(x1, x2)  =  cnfequiv1_in_ga(x1)
n(x1)  =  n(x1)
a(x1, x2)  =  a(x1, x2)
o(x1, x2)  =  o(x1, x2)
transform29_in_ga(x1, x2)  =  transform29_in_ga(x1)
transformc29_in_ga(x1, x2)  =  transformc29_in_ga(x1)
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x1, x2)
U42_ga(x1, x2, x3, x4)  =  U42_ga(x1, x2, x4)
U43_ga(x1, x2, x3, x4)  =  U43_ga(x1, x2, x4)
U44_ga(x1, x2, x3, x4)  =  U44_ga(x1, x2, x4)
U45_ga(x1, x2, x3, x4)  =  U45_ga(x1, x2, x4)
U46_ga(x1, x2, x3)  =  U46_ga(x1, x3)
CNFEQUIV1_IN_GA(x1, x2)  =  CNFEQUIV1_IN_GA(x1)
U6_GA(x1, x2, x3)  =  U6_GA(x1, x3)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x1, x2, x4)
U8_GA(x1, x2, x3, x4)  =  U8_GA(x1, x2, x4)
U9_GA(x1, x2, x3, x4, x5)  =  U9_GA(x1, x2, x3, x5)
U10_GA(x1, x2, x3, x4, x5)  =  U10_GA(x1, x2, x3, x5)
U11_GA(x1, x2, x3, x4)  =  U11_GA(x1, x2, x4)
TRANSFORM29_IN_GA(x1, x2)  =  TRANSFORM29_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x2, x4)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x1, x2, x4)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x1, x2, x4)
U14_GA(x1, x2, x3, x4)  =  U14_GA(x1, x2, x4)
U15_GA(x1, x2, x3, x4)  =  U15_GA(x1, x2, x4)
U16_GA(x1, x2, x3, x4)  =  U16_GA(x1, x2, x4)
U17_GA(x1, x2, x3, x4)  =  U17_GA(x1, x2, x4)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x1, x2, x4)
U19_GA(x1, x2, x3, x4)  =  U19_GA(x1, x2, x4)
U20_GA(x1, x2, x3, x4)  =  U20_GA(x1, x2, x4)
U21_GA(x1, x2, x3, x4)  =  U21_GA(x1, x2, x4)
U22_GA(x1, x2, x3, x4)  =  U22_GA(x1, x2, x4)
U23_GA(x1, x2, x3)  =  U23_GA(x1, x3)
U24_GA(x1, x2, x3)  =  U24_GA(x1, x3)
U25_GA(x1, x2, x3)  =  U25_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(n(n(T12)), T7) → U6_GA(T12, T7, cnfequiv1_in_ga(T12, T7))
CNFEQUIV1_IN_GA(n(n(T12)), T7) → CNFEQUIV1_IN_GA(T12, T7)
CNFEQUIV1_IN_GA(n(a(T23, T24)), T7) → U7_GA(T23, T24, T7, cnfequiv1_in_ga(o(n(T23), n(T24)), T7))
CNFEQUIV1_IN_GA(n(a(T23, T24)), T7) → CNFEQUIV1_IN_GA(o(n(T23), n(T24)), T7)
CNFEQUIV1_IN_GA(n(o(T36, T37)), T7) → U8_GA(T36, T37, T7, cnfequiv1_in_ga(a(n(T36), n(T37)), T7))
CNFEQUIV1_IN_GA(n(o(T36, T37)), T7) → CNFEQUIV1_IN_GA(a(n(T36), n(T37)), T7)
CNFEQUIV1_IN_GA(o(T53, a(T54, T55)), T7) → U9_GA(T53, T54, T55, T7, cnfequiv1_in_ga(a(o(T53, T54), o(T53, T55)), T7))
CNFEQUIV1_IN_GA(o(T53, a(T54, T55)), T7) → CNFEQUIV1_IN_GA(a(o(T53, T54), o(T53, T55)), T7)
CNFEQUIV1_IN_GA(o(a(T72, T73), T74), T7) → U10_GA(T72, T73, T74, T7, cnfequiv1_in_ga(a(o(T72, T74), o(T73, T74)), T7))
CNFEQUIV1_IN_GA(o(a(T72, T73), T74), T7) → CNFEQUIV1_IN_GA(a(o(T72, T74), o(T73, T74)), T7)
CNFEQUIV1_IN_GA(o(T87, T88), T7) → U11_GA(T87, T88, T7, transform29_in_ga(T87, X108))
CNFEQUIV1_IN_GA(o(T87, T88), T7) → TRANSFORM29_IN_GA(T87, X108)
TRANSFORM29_IN_GA(o(T157, T158), o(X201, T158)) → U1_GA(T157, T158, X201, transform29_in_ga(T157, X201))
TRANSFORM29_IN_GA(o(T157, T158), o(X201, T158)) → TRANSFORM29_IN_GA(T157, X201)
TRANSFORM29_IN_GA(o(T169, T170), o(T169, X226)) → U2_GA(T169, T170, X226, transform29_in_ga(T170, X226))
TRANSFORM29_IN_GA(o(T169, T170), o(T169, X226)) → TRANSFORM29_IN_GA(T170, X226)
TRANSFORM29_IN_GA(a(T181, T182), a(X251, T182)) → U3_GA(T181, T182, X251, transform29_in_ga(T181, X251))
TRANSFORM29_IN_GA(a(T181, T182), a(X251, T182)) → TRANSFORM29_IN_GA(T181, X251)
TRANSFORM29_IN_GA(a(T193, T194), a(T193, X276)) → U4_GA(T193, T194, X276, transform29_in_ga(T194, X276))
TRANSFORM29_IN_GA(a(T193, T194), a(T193, X276)) → TRANSFORM29_IN_GA(T194, X276)
TRANSFORM29_IN_GA(n(T199), n(X290)) → U5_GA(T199, X290, transform29_in_ga(T199, X290))
TRANSFORM29_IN_GA(n(T199), n(X290)) → TRANSFORM29_IN_GA(T199, X290)
CNFEQUIV1_IN_GA(o(T87, T88), T7) → U12_GA(T87, T88, T7, transformc29_in_ga(T87, T91))
U12_GA(T87, T88, T7, transformc29_out_ga(T87, T91)) → U13_GA(T87, T88, T7, cnfequiv1_in_ga(o(T91, T88), T7))
U12_GA(T87, T88, T7, transformc29_out_ga(T87, T91)) → CNFEQUIV1_IN_GA(o(T91, T88), T7)
CNFEQUIV1_IN_GA(o(T213, T214), T7) → U14_GA(T213, T214, T7, transform29_in_ga(T214, X317))
CNFEQUIV1_IN_GA(o(T213, T214), T7) → TRANSFORM29_IN_GA(T214, X317)
CNFEQUIV1_IN_GA(o(T213, T214), T7) → U15_GA(T213, T214, T7, transformc29_in_ga(T214, T217))
U15_GA(T213, T214, T7, transformc29_out_ga(T214, T217)) → U16_GA(T213, T214, T7, cnfequiv1_in_ga(o(T213, T217), T7))
U15_GA(T213, T214, T7, transformc29_out_ga(T214, T217)) → CNFEQUIV1_IN_GA(o(T213, T217), T7)
CNFEQUIV1_IN_GA(a(T231, T232), T7) → U17_GA(T231, T232, T7, transform29_in_ga(T231, X347))
CNFEQUIV1_IN_GA(a(T231, T232), T7) → TRANSFORM29_IN_GA(T231, X347)
CNFEQUIV1_IN_GA(a(T231, T232), T7) → U18_GA(T231, T232, T7, transformc29_in_ga(T231, T235))
U18_GA(T231, T232, T7, transformc29_out_ga(T231, T235)) → U19_GA(T231, T232, T7, cnfequiv1_in_ga(a(T235, T232), T7))
U18_GA(T231, T232, T7, transformc29_out_ga(T231, T235)) → CNFEQUIV1_IN_GA(a(T235, T232), T7)
CNFEQUIV1_IN_GA(a(T249, T250), T7) → U20_GA(T249, T250, T7, transform29_in_ga(T250, X377))
CNFEQUIV1_IN_GA(a(T249, T250), T7) → TRANSFORM29_IN_GA(T250, X377)
CNFEQUIV1_IN_GA(a(T249, T250), T7) → U21_GA(T249, T250, T7, transformc29_in_ga(T250, T253))
U21_GA(T249, T250, T7, transformc29_out_ga(T250, T253)) → U22_GA(T249, T250, T7, cnfequiv1_in_ga(a(T249, T253), T7))
U21_GA(T249, T250, T7, transformc29_out_ga(T250, T253)) → CNFEQUIV1_IN_GA(a(T249, T253), T7)
CNFEQUIV1_IN_GA(n(T263), T7) → U23_GA(T263, T7, transform29_in_ga(T263, X402))
CNFEQUIV1_IN_GA(n(T263), T7) → TRANSFORM29_IN_GA(T263, X402)
CNFEQUIV1_IN_GA(n(T263), T7) → U24_GA(T263, T7, transformc29_in_ga(T263, T266))
U24_GA(T263, T7, transformc29_out_ga(T263, T266)) → U25_GA(T263, T7, cnfequiv1_in_ga(n(T266), T7))
U24_GA(T263, T7, transformc29_out_ga(T263, T266)) → CNFEQUIV1_IN_GA(n(T266), T7)

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98)), T98) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108)), o(n(T107), n(T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118)), a(n(T117), n(T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148))) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158), o(X201, T158)) → U42_ga(T157, T158, X201, transformc29_in_ga(T157, X201))
transformc29_in_ga(o(T169, T170), o(T169, X226)) → U43_ga(T169, T170, X226, transformc29_in_ga(T170, X226))
transformc29_in_ga(a(T181, T182), a(X251, T182)) → U44_ga(T181, T182, X251, transformc29_in_ga(T181, X251))
transformc29_in_ga(a(T193, T194), a(T193, X276)) → U45_ga(T193, T194, X276, transformc29_in_ga(T194, X276))
transformc29_in_ga(n(T199), n(X290)) → U46_ga(T199, X290, transformc29_in_ga(T199, X290))
U46_ga(T199, X290, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, X276, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, X251, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, X226, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, X201, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The argument filtering Pi contains the following mapping:
cnfequiv1_in_ga(x1, x2)  =  cnfequiv1_in_ga(x1)
n(x1)  =  n(x1)
a(x1, x2)  =  a(x1, x2)
o(x1, x2)  =  o(x1, x2)
transform29_in_ga(x1, x2)  =  transform29_in_ga(x1)
transformc29_in_ga(x1, x2)  =  transformc29_in_ga(x1)
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x1, x2)
U42_ga(x1, x2, x3, x4)  =  U42_ga(x1, x2, x4)
U43_ga(x1, x2, x3, x4)  =  U43_ga(x1, x2, x4)
U44_ga(x1, x2, x3, x4)  =  U44_ga(x1, x2, x4)
U45_ga(x1, x2, x3, x4)  =  U45_ga(x1, x2, x4)
U46_ga(x1, x2, x3)  =  U46_ga(x1, x3)
CNFEQUIV1_IN_GA(x1, x2)  =  CNFEQUIV1_IN_GA(x1)
U6_GA(x1, x2, x3)  =  U6_GA(x1, x3)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x1, x2, x4)
U8_GA(x1, x2, x3, x4)  =  U8_GA(x1, x2, x4)
U9_GA(x1, x2, x3, x4, x5)  =  U9_GA(x1, x2, x3, x5)
U10_GA(x1, x2, x3, x4, x5)  =  U10_GA(x1, x2, x3, x5)
U11_GA(x1, x2, x3, x4)  =  U11_GA(x1, x2, x4)
TRANSFORM29_IN_GA(x1, x2)  =  TRANSFORM29_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x2, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x2, x4)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x2, x4)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x1, x2, x4)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x1, x2, x4)
U14_GA(x1, x2, x3, x4)  =  U14_GA(x1, x2, x4)
U15_GA(x1, x2, x3, x4)  =  U15_GA(x1, x2, x4)
U16_GA(x1, x2, x3, x4)  =  U16_GA(x1, x2, x4)
U17_GA(x1, x2, x3, x4)  =  U17_GA(x1, x2, x4)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x1, x2, x4)
U19_GA(x1, x2, x3, x4)  =  U19_GA(x1, x2, x4)
U20_GA(x1, x2, x3, x4)  =  U20_GA(x1, x2, x4)
U21_GA(x1, x2, x3, x4)  =  U21_GA(x1, x2, x4)
U22_GA(x1, x2, x3, x4)  =  U22_GA(x1, x2, x4)
U23_GA(x1, x2, x3)  =  U23_GA(x1, x3)
U24_GA(x1, x2, x3)  =  U24_GA(x1, x3)
U25_GA(x1, x2, x3)  =  U25_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 29 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TRANSFORM29_IN_GA(o(T169, T170), o(T169, X226)) → TRANSFORM29_IN_GA(T170, X226)
TRANSFORM29_IN_GA(o(T157, T158), o(X201, T158)) → TRANSFORM29_IN_GA(T157, X201)
TRANSFORM29_IN_GA(a(T181, T182), a(X251, T182)) → TRANSFORM29_IN_GA(T181, X251)
TRANSFORM29_IN_GA(a(T193, T194), a(T193, X276)) → TRANSFORM29_IN_GA(T194, X276)
TRANSFORM29_IN_GA(n(T199), n(X290)) → TRANSFORM29_IN_GA(T199, X290)

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98)), T98) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108)), o(n(T107), n(T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118)), a(n(T117), n(T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148))) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158), o(X201, T158)) → U42_ga(T157, T158, X201, transformc29_in_ga(T157, X201))
transformc29_in_ga(o(T169, T170), o(T169, X226)) → U43_ga(T169, T170, X226, transformc29_in_ga(T170, X226))
transformc29_in_ga(a(T181, T182), a(X251, T182)) → U44_ga(T181, T182, X251, transformc29_in_ga(T181, X251))
transformc29_in_ga(a(T193, T194), a(T193, X276)) → U45_ga(T193, T194, X276, transformc29_in_ga(T194, X276))
transformc29_in_ga(n(T199), n(X290)) → U46_ga(T199, X290, transformc29_in_ga(T199, X290))
U46_ga(T199, X290, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, X276, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, X251, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, X226, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, X201, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The argument filtering Pi contains the following mapping:
n(x1)  =  n(x1)
a(x1, x2)  =  a(x1, x2)
o(x1, x2)  =  o(x1, x2)
transformc29_in_ga(x1, x2)  =  transformc29_in_ga(x1)
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x1, x2)
U42_ga(x1, x2, x3, x4)  =  U42_ga(x1, x2, x4)
U43_ga(x1, x2, x3, x4)  =  U43_ga(x1, x2, x4)
U44_ga(x1, x2, x3, x4)  =  U44_ga(x1, x2, x4)
U45_ga(x1, x2, x3, x4)  =  U45_ga(x1, x2, x4)
U46_ga(x1, x2, x3)  =  U46_ga(x1, x3)
TRANSFORM29_IN_GA(x1, x2)  =  TRANSFORM29_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TRANSFORM29_IN_GA(o(T169, T170), o(T169, X226)) → TRANSFORM29_IN_GA(T170, X226)
TRANSFORM29_IN_GA(o(T157, T158), o(X201, T158)) → TRANSFORM29_IN_GA(T157, X201)
TRANSFORM29_IN_GA(a(T181, T182), a(X251, T182)) → TRANSFORM29_IN_GA(T181, X251)
TRANSFORM29_IN_GA(a(T193, T194), a(T193, X276)) → TRANSFORM29_IN_GA(T194, X276)
TRANSFORM29_IN_GA(n(T199), n(X290)) → TRANSFORM29_IN_GA(T199, X290)

R is empty.
The argument filtering Pi contains the following mapping:
n(x1)  =  n(x1)
a(x1, x2)  =  a(x1, x2)
o(x1, x2)  =  o(x1, x2)
TRANSFORM29_IN_GA(x1, x2)  =  TRANSFORM29_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TRANSFORM29_IN_GA(o(T169, T170)) → TRANSFORM29_IN_GA(T170)
TRANSFORM29_IN_GA(o(T157, T158)) → TRANSFORM29_IN_GA(T157)
TRANSFORM29_IN_GA(a(T181, T182)) → TRANSFORM29_IN_GA(T181)
TRANSFORM29_IN_GA(a(T193, T194)) → TRANSFORM29_IN_GA(T194)
TRANSFORM29_IN_GA(n(T199)) → TRANSFORM29_IN_GA(T199)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • TRANSFORM29_IN_GA(o(T169, T170)) → TRANSFORM29_IN_GA(T170)
    The graph contains the following edges 1 > 1

  • TRANSFORM29_IN_GA(o(T157, T158)) → TRANSFORM29_IN_GA(T157)
    The graph contains the following edges 1 > 1

  • TRANSFORM29_IN_GA(a(T181, T182)) → TRANSFORM29_IN_GA(T181)
    The graph contains the following edges 1 > 1

  • TRANSFORM29_IN_GA(a(T193, T194)) → TRANSFORM29_IN_GA(T194)
    The graph contains the following edges 1 > 1

  • TRANSFORM29_IN_GA(n(T199)) → TRANSFORM29_IN_GA(T199)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(a(T231, T232), T7) → U18_GA(T231, T232, T7, transformc29_in_ga(T231, T235))
U18_GA(T231, T232, T7, transformc29_out_ga(T231, T235)) → CNFEQUIV1_IN_GA(a(T235, T232), T7)
CNFEQUIV1_IN_GA(a(T249, T250), T7) → U21_GA(T249, T250, T7, transformc29_in_ga(T250, T253))
U21_GA(T249, T250, T7, transformc29_out_ga(T250, T253)) → CNFEQUIV1_IN_GA(a(T249, T253), T7)

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98)), T98) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108)), o(n(T107), n(T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118)), a(n(T117), n(T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148))) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158), o(X201, T158)) → U42_ga(T157, T158, X201, transformc29_in_ga(T157, X201))
transformc29_in_ga(o(T169, T170), o(T169, X226)) → U43_ga(T169, T170, X226, transformc29_in_ga(T170, X226))
transformc29_in_ga(a(T181, T182), a(X251, T182)) → U44_ga(T181, T182, X251, transformc29_in_ga(T181, X251))
transformc29_in_ga(a(T193, T194), a(T193, X276)) → U45_ga(T193, T194, X276, transformc29_in_ga(T194, X276))
transformc29_in_ga(n(T199), n(X290)) → U46_ga(T199, X290, transformc29_in_ga(T199, X290))
U46_ga(T199, X290, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, X276, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, X251, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, X226, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, X201, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The argument filtering Pi contains the following mapping:
n(x1)  =  n(x1)
a(x1, x2)  =  a(x1, x2)
o(x1, x2)  =  o(x1, x2)
transformc29_in_ga(x1, x2)  =  transformc29_in_ga(x1)
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x1, x2)
U42_ga(x1, x2, x3, x4)  =  U42_ga(x1, x2, x4)
U43_ga(x1, x2, x3, x4)  =  U43_ga(x1, x2, x4)
U44_ga(x1, x2, x3, x4)  =  U44_ga(x1, x2, x4)
U45_ga(x1, x2, x3, x4)  =  U45_ga(x1, x2, x4)
U46_ga(x1, x2, x3)  =  U46_ga(x1, x3)
CNFEQUIV1_IN_GA(x1, x2)  =  CNFEQUIV1_IN_GA(x1)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x1, x2, x4)
U21_GA(x1, x2, x3, x4)  =  U21_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(15) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(a(T231, T232)) → U18_GA(T231, T232, transformc29_in_ga(T231))
U18_GA(T231, T232, transformc29_out_ga(T231, T235)) → CNFEQUIV1_IN_GA(a(T235, T232))
CNFEQUIV1_IN_GA(a(T249, T250)) → U21_GA(T249, T250, transformc29_in_ga(T250))
U21_GA(T249, T250, transformc29_out_ga(T250, T253)) → CNFEQUIV1_IN_GA(a(T249, T253))

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The set Q consists of the following terms:

transformc29_in_ga(x0)
U46_ga(x0, x1)
U45_ga(x0, x1, x2)
U44_ga(x0, x1, x2)
U43_ga(x0, x1, x2)
U42_ga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CNFEQUIV1_IN_GA(a(T231, T232)) → U18_GA(T231, T232, transformc29_in_ga(T231))
U18_GA(T231, T232, transformc29_out_ga(T231, T235)) → CNFEQUIV1_IN_GA(a(T235, T232))
CNFEQUIV1_IN_GA(a(T249, T250)) → U21_GA(T249, T250, transformc29_in_ga(T250))
U21_GA(T249, T250, transformc29_out_ga(T250, T253)) → CNFEQUIV1_IN_GA(a(T249, T253))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CNFEQUIV1_IN_GA(x1)  =  CNFEQUIV1_IN_GA(x1)
a(x1, x2)  =  a(x1, x2)
U18_GA(x1, x2, x3)  =  U18_GA(x2, x3)
transformc29_in_ga(x1)  =  x1
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x2)
U21_GA(x1, x2, x3)  =  U21_GA(x1, x3)
n(x1)  =  n(x1)
o(x1, x2)  =  o(x1, x2)
U42_ga(x1, x2, x3)  =  U42_ga(x2, x3)
U43_ga(x1, x2, x3)  =  U43_ga(x1, x3)
U44_ga(x1, x2, x3)  =  U44_ga(x2, x3)
U45_ga(x1, x2, x3)  =  U45_ga(x1, x3)
U46_ga(x1, x2)  =  U46_ga(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[n1, U46ga1] > [o2, U42ga2, U43ga2] > [a2, U18GA2, U21GA2, U44ga2, U45ga2] > CNFEQUIV1INGA1
[n1, U46ga1] > [o2, U42ga2, U43ga2] > [a2, U18GA2, U21GA2, U44ga2, U45ga2] > transformc29outga1

Status:
CNFEQUIV1INGA1: [1]
a2: multiset
U18GA2: multiset
transformc29outga1: multiset
U21GA2: multiset
n1: [1]
o2: [1,2]
U42ga2: [2,1]
U43ga2: [1,2]
U44ga2: multiset
U45ga2: multiset
U46ga1: [1]


The following usable rules [FROCOS05] were oriented:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The set Q consists of the following terms:

transformc29_in_ga(x0)
U46_ga(x0, x1)
U45_ga(x0, x1, x2)
U44_ga(x0, x1, x2)
U43_ga(x0, x1, x2)
U42_ga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(o(T87, T88), T7) → U12_GA(T87, T88, T7, transformc29_in_ga(T87, T91))
U12_GA(T87, T88, T7, transformc29_out_ga(T87, T91)) → CNFEQUIV1_IN_GA(o(T91, T88), T7)
CNFEQUIV1_IN_GA(o(T213, T214), T7) → U15_GA(T213, T214, T7, transformc29_in_ga(T214, T217))
U15_GA(T213, T214, T7, transformc29_out_ga(T214, T217)) → CNFEQUIV1_IN_GA(o(T213, T217), T7)

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98)), T98) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108)), o(n(T107), n(T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118)), a(n(T117), n(T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148))) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158), o(X201, T158)) → U42_ga(T157, T158, X201, transformc29_in_ga(T157, X201))
transformc29_in_ga(o(T169, T170), o(T169, X226)) → U43_ga(T169, T170, X226, transformc29_in_ga(T170, X226))
transformc29_in_ga(a(T181, T182), a(X251, T182)) → U44_ga(T181, T182, X251, transformc29_in_ga(T181, X251))
transformc29_in_ga(a(T193, T194), a(T193, X276)) → U45_ga(T193, T194, X276, transformc29_in_ga(T194, X276))
transformc29_in_ga(n(T199), n(X290)) → U46_ga(T199, X290, transformc29_in_ga(T199, X290))
U46_ga(T199, X290, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, X276, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, X251, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, X226, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, X201, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The argument filtering Pi contains the following mapping:
n(x1)  =  n(x1)
a(x1, x2)  =  a(x1, x2)
o(x1, x2)  =  o(x1, x2)
transformc29_in_ga(x1, x2)  =  transformc29_in_ga(x1)
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x1, x2)
U42_ga(x1, x2, x3, x4)  =  U42_ga(x1, x2, x4)
U43_ga(x1, x2, x3, x4)  =  U43_ga(x1, x2, x4)
U44_ga(x1, x2, x3, x4)  =  U44_ga(x1, x2, x4)
U45_ga(x1, x2, x3, x4)  =  U45_ga(x1, x2, x4)
U46_ga(x1, x2, x3)  =  U46_ga(x1, x3)
CNFEQUIV1_IN_GA(x1, x2)  =  CNFEQUIV1_IN_GA(x1)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x1, x2, x4)
U15_GA(x1, x2, x3, x4)  =  U15_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(22) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(o(T87, T88)) → U12_GA(T87, T88, transformc29_in_ga(T87))
U12_GA(T87, T88, transformc29_out_ga(T87, T91)) → CNFEQUIV1_IN_GA(o(T91, T88))
CNFEQUIV1_IN_GA(o(T213, T214)) → U15_GA(T213, T214, transformc29_in_ga(T214))
U15_GA(T213, T214, transformc29_out_ga(T214, T217)) → CNFEQUIV1_IN_GA(o(T213, T217))

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The set Q consists of the following terms:

transformc29_in_ga(x0)
U46_ga(x0, x1)
U45_ga(x0, x1, x2)
U44_ga(x0, x1, x2)
U43_ga(x0, x1, x2)
U42_ga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U12_GA(T87, T88, transformc29_out_ga(T87, T91)) → CNFEQUIV1_IN_GA(o(T91, T88))
U15_GA(T213, T214, transformc29_out_ga(T214, T217)) → CNFEQUIV1_IN_GA(o(T213, T217))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CNFEQUIV1_IN_GA(x1)  =  x1
o(x1, x2)  =  o(x1, x2)
U12_GA(x1, x2, x3)  =  U12_GA(x2, x3)
transformc29_in_ga(x1)  =  x1
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x2)
U15_GA(x1, x2, x3)  =  U15_GA(x1, x3)
n(x1)  =  n(x1)
a(x1, x2)  =  a(x1, x2)
U42_ga(x1, x2, x3)  =  U42_ga(x2, x3)
U43_ga(x1, x2, x3)  =  U43_ga(x1, x3)
U44_ga(x1, x2, x3)  =  U44_ga(x2, x3)
U45_ga(x1, x2, x3)  =  U45_ga(x1, x3)
U46_ga(x1, x2)  =  U46_ga(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[n1, U46ga1] > [o2, U12GA2, U15GA2, U42ga2, U43ga2] > [a2, U44ga2, U45ga2] > transformc29outga1

Status:
o2: multiset
U12GA2: multiset
transformc29outga1: multiset
U15GA2: multiset
n1: [1]
a2: multiset
U42ga2: multiset
U43ga2: multiset
U44ga2: multiset
U45ga2: multiset
U46ga1: [1]


The following usable rules [FROCOS05] were oriented:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(o(T87, T88)) → U12_GA(T87, T88, transformc29_in_ga(T87))
CNFEQUIV1_IN_GA(o(T213, T214)) → U15_GA(T213, T214, transformc29_in_ga(T214))

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The set Q consists of the following terms:

transformc29_in_ga(x0)
U46_ga(x0, x1)
U45_ga(x0, x1, x2)
U44_ga(x0, x1, x2)
U43_ga(x0, x1, x2)
U42_ga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(26) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(27) TRUE

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(n(T263), T7) → U24_GA(T263, T7, transformc29_in_ga(T263, T266))
U24_GA(T263, T7, transformc29_out_ga(T263, T266)) → CNFEQUIV1_IN_GA(n(T266), T7)
CNFEQUIV1_IN_GA(n(n(T12)), T7) → CNFEQUIV1_IN_GA(T12, T7)

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98)), T98) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108)), o(n(T107), n(T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118)), a(n(T117), n(T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148))) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158), o(X201, T158)) → U42_ga(T157, T158, X201, transformc29_in_ga(T157, X201))
transformc29_in_ga(o(T169, T170), o(T169, X226)) → U43_ga(T169, T170, X226, transformc29_in_ga(T170, X226))
transformc29_in_ga(a(T181, T182), a(X251, T182)) → U44_ga(T181, T182, X251, transformc29_in_ga(T181, X251))
transformc29_in_ga(a(T193, T194), a(T193, X276)) → U45_ga(T193, T194, X276, transformc29_in_ga(T194, X276))
transformc29_in_ga(n(T199), n(X290)) → U46_ga(T199, X290, transformc29_in_ga(T199, X290))
U46_ga(T199, X290, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, X276, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, X251, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, X226, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, X201, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The argument filtering Pi contains the following mapping:
n(x1)  =  n(x1)
a(x1, x2)  =  a(x1, x2)
o(x1, x2)  =  o(x1, x2)
transformc29_in_ga(x1, x2)  =  transformc29_in_ga(x1)
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x1, x2)
U42_ga(x1, x2, x3, x4)  =  U42_ga(x1, x2, x4)
U43_ga(x1, x2, x3, x4)  =  U43_ga(x1, x2, x4)
U44_ga(x1, x2, x3, x4)  =  U44_ga(x1, x2, x4)
U45_ga(x1, x2, x3, x4)  =  U45_ga(x1, x2, x4)
U46_ga(x1, x2, x3)  =  U46_ga(x1, x3)
CNFEQUIV1_IN_GA(x1, x2)  =  CNFEQUIV1_IN_GA(x1)
U24_GA(x1, x2, x3)  =  U24_GA(x1, x3)

We have to consider all (P,R,Pi)-chains

(29) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(n(T263)) → U24_GA(T263, transformc29_in_ga(T263))
U24_GA(T263, transformc29_out_ga(T263, T266)) → CNFEQUIV1_IN_GA(n(T266))
CNFEQUIV1_IN_GA(n(n(T12))) → CNFEQUIV1_IN_GA(T12)

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The set Q consists of the following terms:

transformc29_in_ga(x0)
U46_ga(x0, x1)
U45_ga(x0, x1, x2)
U44_ga(x0, x1, x2)
U43_ga(x0, x1, x2)
U42_ga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CNFEQUIV1_IN_GA(n(n(T12))) → CNFEQUIV1_IN_GA(T12)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(CNFEQUIV1_IN_GA(x1)) = x1   
POL(U24_GA(x1, x2)) = 1 + x2   
POL(U42_ga(x1, x2, x3)) = 0   
POL(U43_ga(x1, x2, x3)) = 0   
POL(U44_ga(x1, x2, x3)) = 0   
POL(U45_ga(x1, x2, x3)) = 0   
POL(U46_ga(x1, x2)) = 1 + x2   
POL(a(x1, x2)) = 0   
POL(n(x1)) = 1 + x1   
POL(o(x1, x2)) = 0   
POL(transformc29_in_ga(x1)) = x1   
POL(transformc29_out_ga(x1, x2)) = x2   

The following usable rules [FROCOS05] were oriented:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CNFEQUIV1_IN_GA(n(T263)) → U24_GA(T263, transformc29_in_ga(T263))
U24_GA(T263, transformc29_out_ga(T263, T266)) → CNFEQUIV1_IN_GA(n(T266))

The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The set Q consists of the following terms:

transformc29_in_ga(x0)
U46_ga(x0, x1)
U45_ga(x0, x1, x2)
U44_ga(x0, x1, x2)
U43_ga(x0, x1, x2)
U42_ga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CNFEQUIV1_IN_GA(n(T263)) → U24_GA(T263, transformc29_in_ga(T263))
U24_GA(T263, transformc29_out_ga(T263, T266)) → CNFEQUIV1_IN_GA(n(T266))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CNFEQUIV1_IN_GA(x1)  =  CNFEQUIV1_IN_GA(x1)
n(x1)  =  n(x1)
U24_GA(x1, x2)  =  U24_GA(x2)
transformc29_in_ga(x1)  =  x1
transformc29_out_ga(x1, x2)  =  transformc29_out_ga(x2)
a(x1, x2)  =  a(x1, x2)
o(x1, x2)  =  o(x1, x2)
U42_ga(x1, x2, x3)  =  U42_ga(x2, x3)
U43_ga(x1, x2, x3)  =  U43_ga(x1, x3)
U44_ga(x1, x2, x3)  =  U44_ga(x2, x3)
U45_ga(x1, x2, x3)  =  U45_ga(x1, x3)
U46_ga(x1, x2)  =  U46_ga(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[n1, U24GA1, U46ga1] > CNFEQUIV1INGA1 > transformc29outga1
[n1, U24GA1, U46ga1] > [o2, U42ga2, U43ga2] > [a2, U44ga2, U45ga2] > transformc29outga1

Status:
CNFEQUIV1INGA1: multiset
n1: multiset
U24GA1: multiset
transformc29outga1: multiset
a2: [2,1]
o2: [2,1]
U42ga2: [1,2]
U43ga2: [2,1]
U44ga2: [1,2]
U45ga2: [2,1]
U46ga1: multiset


The following usable rules [FROCOS05] were oriented:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

transformc29_in_ga(n(n(T98))) → transformc29_out_ga(n(n(T98)), T98)
transformc29_in_ga(n(a(T107, T108))) → transformc29_out_ga(n(a(T107, T108)), o(n(T107), n(T108)))
transformc29_in_ga(n(o(T117, T118))) → transformc29_out_ga(n(o(T117, T118)), a(n(T117), n(T118)))
transformc29_in_ga(o(T131, a(T132, T133))) → transformc29_out_ga(o(T131, a(T132, T133)), a(o(T131, T132), o(T131, T133)))
transformc29_in_ga(o(a(T146, T147), T148)) → transformc29_out_ga(o(a(T146, T147), T148), a(o(T146, T148), o(T147, T148)))
transformc29_in_ga(o(T157, T158)) → U42_ga(T157, T158, transformc29_in_ga(T157))
transformc29_in_ga(o(T169, T170)) → U43_ga(T169, T170, transformc29_in_ga(T170))
transformc29_in_ga(a(T181, T182)) → U44_ga(T181, T182, transformc29_in_ga(T181))
transformc29_in_ga(a(T193, T194)) → U45_ga(T193, T194, transformc29_in_ga(T194))
transformc29_in_ga(n(T199)) → U46_ga(T199, transformc29_in_ga(T199))
U46_ga(T199, transformc29_out_ga(T199, X290)) → transformc29_out_ga(n(T199), n(X290))
U45_ga(T193, T194, transformc29_out_ga(T194, X276)) → transformc29_out_ga(a(T193, T194), a(T193, X276))
U44_ga(T181, T182, transformc29_out_ga(T181, X251)) → transformc29_out_ga(a(T181, T182), a(X251, T182))
U43_ga(T169, T170, transformc29_out_ga(T170, X226)) → transformc29_out_ga(o(T169, T170), o(T169, X226))
U42_ga(T157, T158, transformc29_out_ga(T157, X201)) → transformc29_out_ga(o(T157, T158), o(X201, T158))

The set Q consists of the following terms:

transformc29_in_ga(x0)
U46_ga(x0, x1)
U45_ga(x0, x1, x2)
U44_ga(x0, x1, x2)
U43_ga(x0, x1, x2)
U42_ga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) YES