(0) Obligation:

Clauses:

conf(X) :- ','(del2(X, Z), ','(del(U, Y, Z), conf(Y))).
del2(X, Y) :- ','(del(U, X, Z), del(V, Z, Y)).
del(X, cons(X, T), T).
del(X, cons(H, T), cons(H, T1)) :- del(X, T, T1).
s2l(s(X), cons(Y, Xs)) :- s2l(X, Xs).
s2l(0, nil).
goal(X) :- ','(s2l(X, XS), conf(XS)).

Queries:

conf(g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

del6(X72, cons(T25, T26), cons(T25, X73)) :- del6(X72, T26, X73).
del18(X147, cons(X148, X149), cons(X148, T46)) :- del18(X147, X149, T46).
del34(X261, cons(T82, T84), cons(T82, X262)) :- del34(X261, T84, X262).
conf19(T64) :- del34(X206, T64, X207).
conf19(T64) :- ','(delc34(T67, T64, T68), del34(X208, T68, X209)).
conf19(T54) :- ','(del2c29(T54, T56), del43(X175, X176, T56)).
conf19(T54) :- ','(del2c29(T54, T56), ','(delc43(T88, T89, T56), conf19(T89))).
del43(X324, cons(X325, X326), cons(X325, T99)) :- del43(X324, X326, T99).
conf1(T9) :- del6(X23, T9, X24).
conf1(T9) :- ','(delc6(T12, T9, T13), del6(X25, T13, X26)).
conf1(T9) :- ','(delc6(T12, T9, T13), ','(delc6(T31, T13, T32), del18(X4, X5, T32))).
conf1(T9) :- ','(delc6(T12, T9, T13), ','(delc6(T31, T13, T32), ','(delc18(T36, T37, T32), conf19(T37)))).

Clauses:

delc6(X53, cons(X53, T20), T20).
delc6(X72, cons(T25, T26), cons(T25, X73)) :- delc6(X72, T26, X73).
delc18(X127, cons(X127, T43), T43).
delc18(X147, cons(X148, X149), cons(X148, T46)) :- delc18(X147, X149, T46).
delc34(X242, cons(X242, T77), T77).
delc34(X261, cons(T82, T84), cons(T82, X262)) :- delc34(X261, T84, X262).
confc19(T54) :- ','(del2c29(T54, T56), ','(delc43(T88, T89, T56), confc19(T89))).
delc43(X304, cons(X304, T95), T95).
delc43(X324, cons(X325, X326), cons(X325, T99)) :- delc43(X324, X326, T99).
del2c29(T64, X209) :- ','(delc34(T67, T64, T68), delc34(X208, T68, X209)).

Afs:

conf1(x1)  =  conf1(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
conf1_in: (b)
del6_in: (f,b,f)
delc6_in: (f,b,f)
del18_in: (f,f,b)
delc18_in: (f,f,b)
conf19_in: (b)
del34_in: (f,b,f)
delc34_in: (f,b,f)
del2c29_in: (b,f)
del43_in: (f,f,b)
delc43_in: (f,f,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

CONF1_IN_G(T9) → U12_G(T9, del6_in_aga(X23, T9, X24))
CONF1_IN_G(T9) → DEL6_IN_AGA(X23, T9, X24)
DEL6_IN_AGA(X72, cons(T25, T26), cons(T25, X73)) → U1_AGA(X72, T25, T26, X73, del6_in_aga(X72, T26, X73))
DEL6_IN_AGA(X72, cons(T25, T26), cons(T25, X73)) → DEL6_IN_AGA(X72, T26, X73)
CONF1_IN_G(T9) → U13_G(T9, delc6_in_aga(T12, T9, T13))
U13_G(T9, delc6_out_aga(T12, T9, T13)) → U14_G(T9, del6_in_aga(X25, T13, X26))
U13_G(T9, delc6_out_aga(T12, T9, T13)) → DEL6_IN_AGA(X25, T13, X26)
U13_G(T9, delc6_out_aga(T12, T9, T13)) → U15_G(T9, delc6_in_aga(T31, T13, T32))
U15_G(T9, delc6_out_aga(T31, T13, T32)) → U16_G(T9, del18_in_aag(X4, X5, T32))
U15_G(T9, delc6_out_aga(T31, T13, T32)) → DEL18_IN_AAG(X4, X5, T32)
DEL18_IN_AAG(X147, cons(X148, X149), cons(X148, T46)) → U2_AAG(X147, X148, X149, T46, del18_in_aag(X147, X149, T46))
DEL18_IN_AAG(X147, cons(X148, X149), cons(X148, T46)) → DEL18_IN_AAG(X147, X149, T46)
U15_G(T9, delc6_out_aga(T31, T13, T32)) → U17_G(T9, delc18_in_aag(T36, T37, T32))
U17_G(T9, delc18_out_aag(T36, T37, T32)) → U18_G(T9, conf19_in_g(T37))
U17_G(T9, delc18_out_aag(T36, T37, T32)) → CONF19_IN_G(T37)
CONF19_IN_G(T64) → U4_G(T64, del34_in_aga(X206, T64, X207))
CONF19_IN_G(T64) → DEL34_IN_AGA(X206, T64, X207)
DEL34_IN_AGA(X261, cons(T82, T84), cons(T82, X262)) → U3_AGA(X261, T82, T84, X262, del34_in_aga(X261, T84, X262))
DEL34_IN_AGA(X261, cons(T82, T84), cons(T82, X262)) → DEL34_IN_AGA(X261, T84, X262)
CONF19_IN_G(T64) → U5_G(T64, delc34_in_aga(T67, T64, T68))
U5_G(T64, delc34_out_aga(T67, T64, T68)) → U6_G(T64, del34_in_aga(X208, T68, X209))
U5_G(T64, delc34_out_aga(T67, T64, T68)) → DEL34_IN_AGA(X208, T68, X209)
CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → U8_G(T54, del43_in_aag(X175, X176, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → DEL43_IN_AAG(X175, X176, T56)
DEL43_IN_AAG(X324, cons(X325, X326), cons(X325, T99)) → U11_AAG(X324, X325, X326, T99, del43_in_aag(X324, X326, T99))
DEL43_IN_AAG(X324, cons(X325, X326), cons(X325, T99)) → DEL43_IN_AAG(X324, X326, T99)
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T88, T89, T56))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → U10_G(T54, conf19_in_g(T89))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → CONF19_IN_G(T89)

The TRS R consists of the following rules:

delc6_in_aga(X53, cons(X53, T20), T20) → delc6_out_aga(X53, cons(X53, T20), T20)
delc6_in_aga(X72, cons(T25, T26), cons(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, cons(T25, T26), cons(T25, X73))
delc18_in_aag(X127, cons(X127, T43), T43) → delc18_out_aag(X127, cons(X127, T43), T43)
delc18_in_aag(X147, cons(X148, X149), cons(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, cons(X148, X149), cons(X148, T46))
delc34_in_aga(X242, cons(X242, T77), T77) → delc34_out_aga(X242, cons(X242, T77), T77)
delc34_in_aga(X261, cons(T82, T84), cons(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, cons(T82, T84), cons(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, cons(X304, T95), T95) → delc43_out_aag(X304, cons(X304, T95), T95)
delc43_in_aag(X324, cons(X325, X326), cons(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, cons(X325, X326), cons(X325, T99))

The argument filtering Pi contains the following mapping:
del6_in_aga(x1, x2, x3)  =  del6_in_aga(x2)
cons(x1, x2)  =  cons(x2)
delc6_in_aga(x1, x2, x3)  =  delc6_in_aga(x2)
delc6_out_aga(x1, x2, x3)  =  delc6_out_aga(x2, x3)
U20_aga(x1, x2, x3, x4, x5)  =  U20_aga(x3, x5)
del18_in_aag(x1, x2, x3)  =  del18_in_aag(x3)
delc18_in_aag(x1, x2, x3)  =  delc18_in_aag(x3)
delc18_out_aag(x1, x2, x3)  =  delc18_out_aag(x2, x3)
U21_aag(x1, x2, x3, x4, x5)  =  U21_aag(x4, x5)
conf19_in_g(x1)  =  conf19_in_g(x1)
del34_in_aga(x1, x2, x3)  =  del34_in_aga(x2)
delc34_in_aga(x1, x2, x3)  =  delc34_in_aga(x2)
delc34_out_aga(x1, x2, x3)  =  delc34_out_aga(x2, x3)
U22_aga(x1, x2, x3, x4, x5)  =  U22_aga(x3, x5)
del2c29_in_ga(x1, x2)  =  del2c29_in_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
U28_ga(x1, x2, x3)  =  U28_ga(x1, x3)
del2c29_out_ga(x1, x2)  =  del2c29_out_ga(x1, x2)
del43_in_aag(x1, x2, x3)  =  del43_in_aag(x3)
delc43_in_aag(x1, x2, x3)  =  delc43_in_aag(x3)
delc43_out_aag(x1, x2, x3)  =  delc43_out_aag(x2, x3)
U26_aag(x1, x2, x3, x4, x5)  =  U26_aag(x4, x5)
CONF1_IN_G(x1)  =  CONF1_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
DEL6_IN_AGA(x1, x2, x3)  =  DEL6_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)
U13_G(x1, x2)  =  U13_G(x1, x2)
U14_G(x1, x2)  =  U14_G(x1, x2)
U15_G(x1, x2)  =  U15_G(x1, x2)
U16_G(x1, x2)  =  U16_G(x1, x2)
DEL18_IN_AAG(x1, x2, x3)  =  DEL18_IN_AAG(x3)
U2_AAG(x1, x2, x3, x4, x5)  =  U2_AAG(x4, x5)
U17_G(x1, x2)  =  U17_G(x1, x2)
U18_G(x1, x2)  =  U18_G(x1, x2)
CONF19_IN_G(x1)  =  CONF19_IN_G(x1)
U4_G(x1, x2)  =  U4_G(x1, x2)
DEL34_IN_AGA(x1, x2, x3)  =  DEL34_IN_AGA(x2)
U3_AGA(x1, x2, x3, x4, x5)  =  U3_AGA(x3, x5)
U5_G(x1, x2)  =  U5_G(x1, x2)
U6_G(x1, x2)  =  U6_G(x1, x2)
U7_G(x1, x2)  =  U7_G(x1, x2)
U8_G(x1, x2)  =  U8_G(x1, x2)
DEL43_IN_AAG(x1, x2, x3)  =  DEL43_IN_AAG(x3)
U11_AAG(x1, x2, x3, x4, x5)  =  U11_AAG(x4, x5)
U9_G(x1, x2)  =  U9_G(x1, x2)
U10_G(x1, x2)  =  U10_G(x1, x2)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONF1_IN_G(T9) → U12_G(T9, del6_in_aga(X23, T9, X24))
CONF1_IN_G(T9) → DEL6_IN_AGA(X23, T9, X24)
DEL6_IN_AGA(X72, cons(T25, T26), cons(T25, X73)) → U1_AGA(X72, T25, T26, X73, del6_in_aga(X72, T26, X73))
DEL6_IN_AGA(X72, cons(T25, T26), cons(T25, X73)) → DEL6_IN_AGA(X72, T26, X73)
CONF1_IN_G(T9) → U13_G(T9, delc6_in_aga(T12, T9, T13))
U13_G(T9, delc6_out_aga(T12, T9, T13)) → U14_G(T9, del6_in_aga(X25, T13, X26))
U13_G(T9, delc6_out_aga(T12, T9, T13)) → DEL6_IN_AGA(X25, T13, X26)
U13_G(T9, delc6_out_aga(T12, T9, T13)) → U15_G(T9, delc6_in_aga(T31, T13, T32))
U15_G(T9, delc6_out_aga(T31, T13, T32)) → U16_G(T9, del18_in_aag(X4, X5, T32))
U15_G(T9, delc6_out_aga(T31, T13, T32)) → DEL18_IN_AAG(X4, X5, T32)
DEL18_IN_AAG(X147, cons(X148, X149), cons(X148, T46)) → U2_AAG(X147, X148, X149, T46, del18_in_aag(X147, X149, T46))
DEL18_IN_AAG(X147, cons(X148, X149), cons(X148, T46)) → DEL18_IN_AAG(X147, X149, T46)
U15_G(T9, delc6_out_aga(T31, T13, T32)) → U17_G(T9, delc18_in_aag(T36, T37, T32))
U17_G(T9, delc18_out_aag(T36, T37, T32)) → U18_G(T9, conf19_in_g(T37))
U17_G(T9, delc18_out_aag(T36, T37, T32)) → CONF19_IN_G(T37)
CONF19_IN_G(T64) → U4_G(T64, del34_in_aga(X206, T64, X207))
CONF19_IN_G(T64) → DEL34_IN_AGA(X206, T64, X207)
DEL34_IN_AGA(X261, cons(T82, T84), cons(T82, X262)) → U3_AGA(X261, T82, T84, X262, del34_in_aga(X261, T84, X262))
DEL34_IN_AGA(X261, cons(T82, T84), cons(T82, X262)) → DEL34_IN_AGA(X261, T84, X262)
CONF19_IN_G(T64) → U5_G(T64, delc34_in_aga(T67, T64, T68))
U5_G(T64, delc34_out_aga(T67, T64, T68)) → U6_G(T64, del34_in_aga(X208, T68, X209))
U5_G(T64, delc34_out_aga(T67, T64, T68)) → DEL34_IN_AGA(X208, T68, X209)
CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → U8_G(T54, del43_in_aag(X175, X176, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → DEL43_IN_AAG(X175, X176, T56)
DEL43_IN_AAG(X324, cons(X325, X326), cons(X325, T99)) → U11_AAG(X324, X325, X326, T99, del43_in_aag(X324, X326, T99))
DEL43_IN_AAG(X324, cons(X325, X326), cons(X325, T99)) → DEL43_IN_AAG(X324, X326, T99)
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T88, T89, T56))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → U10_G(T54, conf19_in_g(T89))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → CONF19_IN_G(T89)

The TRS R consists of the following rules:

delc6_in_aga(X53, cons(X53, T20), T20) → delc6_out_aga(X53, cons(X53, T20), T20)
delc6_in_aga(X72, cons(T25, T26), cons(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, cons(T25, T26), cons(T25, X73))
delc18_in_aag(X127, cons(X127, T43), T43) → delc18_out_aag(X127, cons(X127, T43), T43)
delc18_in_aag(X147, cons(X148, X149), cons(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, cons(X148, X149), cons(X148, T46))
delc34_in_aga(X242, cons(X242, T77), T77) → delc34_out_aga(X242, cons(X242, T77), T77)
delc34_in_aga(X261, cons(T82, T84), cons(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, cons(T82, T84), cons(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, cons(X304, T95), T95) → delc43_out_aag(X304, cons(X304, T95), T95)
delc43_in_aag(X324, cons(X325, X326), cons(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, cons(X325, X326), cons(X325, T99))

The argument filtering Pi contains the following mapping:
del6_in_aga(x1, x2, x3)  =  del6_in_aga(x2)
cons(x1, x2)  =  cons(x2)
delc6_in_aga(x1, x2, x3)  =  delc6_in_aga(x2)
delc6_out_aga(x1, x2, x3)  =  delc6_out_aga(x2, x3)
U20_aga(x1, x2, x3, x4, x5)  =  U20_aga(x3, x5)
del18_in_aag(x1, x2, x3)  =  del18_in_aag(x3)
delc18_in_aag(x1, x2, x3)  =  delc18_in_aag(x3)
delc18_out_aag(x1, x2, x3)  =  delc18_out_aag(x2, x3)
U21_aag(x1, x2, x3, x4, x5)  =  U21_aag(x4, x5)
conf19_in_g(x1)  =  conf19_in_g(x1)
del34_in_aga(x1, x2, x3)  =  del34_in_aga(x2)
delc34_in_aga(x1, x2, x3)  =  delc34_in_aga(x2)
delc34_out_aga(x1, x2, x3)  =  delc34_out_aga(x2, x3)
U22_aga(x1, x2, x3, x4, x5)  =  U22_aga(x3, x5)
del2c29_in_ga(x1, x2)  =  del2c29_in_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
U28_ga(x1, x2, x3)  =  U28_ga(x1, x3)
del2c29_out_ga(x1, x2)  =  del2c29_out_ga(x1, x2)
del43_in_aag(x1, x2, x3)  =  del43_in_aag(x3)
delc43_in_aag(x1, x2, x3)  =  delc43_in_aag(x3)
delc43_out_aag(x1, x2, x3)  =  delc43_out_aag(x2, x3)
U26_aag(x1, x2, x3, x4, x5)  =  U26_aag(x4, x5)
CONF1_IN_G(x1)  =  CONF1_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
DEL6_IN_AGA(x1, x2, x3)  =  DEL6_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)
U13_G(x1, x2)  =  U13_G(x1, x2)
U14_G(x1, x2)  =  U14_G(x1, x2)
U15_G(x1, x2)  =  U15_G(x1, x2)
U16_G(x1, x2)  =  U16_G(x1, x2)
DEL18_IN_AAG(x1, x2, x3)  =  DEL18_IN_AAG(x3)
U2_AAG(x1, x2, x3, x4, x5)  =  U2_AAG(x4, x5)
U17_G(x1, x2)  =  U17_G(x1, x2)
U18_G(x1, x2)  =  U18_G(x1, x2)
CONF19_IN_G(x1)  =  CONF19_IN_G(x1)
U4_G(x1, x2)  =  U4_G(x1, x2)
DEL34_IN_AGA(x1, x2, x3)  =  DEL34_IN_AGA(x2)
U3_AGA(x1, x2, x3, x4, x5)  =  U3_AGA(x3, x5)
U5_G(x1, x2)  =  U5_G(x1, x2)
U6_G(x1, x2)  =  U6_G(x1, x2)
U7_G(x1, x2)  =  U7_G(x1, x2)
U8_G(x1, x2)  =  U8_G(x1, x2)
DEL43_IN_AAG(x1, x2, x3)  =  DEL43_IN_AAG(x3)
U11_AAG(x1, x2, x3, x4, x5)  =  U11_AAG(x4, x5)
U9_G(x1, x2)  =  U9_G(x1, x2)
U10_G(x1, x2)  =  U10_G(x1, x2)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 23 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL43_IN_AAG(X324, cons(X325, X326), cons(X325, T99)) → DEL43_IN_AAG(X324, X326, T99)

The TRS R consists of the following rules:

delc6_in_aga(X53, cons(X53, T20), T20) → delc6_out_aga(X53, cons(X53, T20), T20)
delc6_in_aga(X72, cons(T25, T26), cons(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, cons(T25, T26), cons(T25, X73))
delc18_in_aag(X127, cons(X127, T43), T43) → delc18_out_aag(X127, cons(X127, T43), T43)
delc18_in_aag(X147, cons(X148, X149), cons(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, cons(X148, X149), cons(X148, T46))
delc34_in_aga(X242, cons(X242, T77), T77) → delc34_out_aga(X242, cons(X242, T77), T77)
delc34_in_aga(X261, cons(T82, T84), cons(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, cons(T82, T84), cons(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, cons(X304, T95), T95) → delc43_out_aag(X304, cons(X304, T95), T95)
delc43_in_aag(X324, cons(X325, X326), cons(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, cons(X325, X326), cons(X325, T99))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
delc6_in_aga(x1, x2, x3)  =  delc6_in_aga(x2)
delc6_out_aga(x1, x2, x3)  =  delc6_out_aga(x2, x3)
U20_aga(x1, x2, x3, x4, x5)  =  U20_aga(x3, x5)
delc18_in_aag(x1, x2, x3)  =  delc18_in_aag(x3)
delc18_out_aag(x1, x2, x3)  =  delc18_out_aag(x2, x3)
U21_aag(x1, x2, x3, x4, x5)  =  U21_aag(x4, x5)
delc34_in_aga(x1, x2, x3)  =  delc34_in_aga(x2)
delc34_out_aga(x1, x2, x3)  =  delc34_out_aga(x2, x3)
U22_aga(x1, x2, x3, x4, x5)  =  U22_aga(x3, x5)
del2c29_in_ga(x1, x2)  =  del2c29_in_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
U28_ga(x1, x2, x3)  =  U28_ga(x1, x3)
del2c29_out_ga(x1, x2)  =  del2c29_out_ga(x1, x2)
delc43_in_aag(x1, x2, x3)  =  delc43_in_aag(x3)
delc43_out_aag(x1, x2, x3)  =  delc43_out_aag(x2, x3)
U26_aag(x1, x2, x3, x4, x5)  =  U26_aag(x4, x5)
DEL43_IN_AAG(x1, x2, x3)  =  DEL43_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL43_IN_AAG(X324, cons(X325, X326), cons(X325, T99)) → DEL43_IN_AAG(X324, X326, T99)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
DEL43_IN_AAG(x1, x2, x3)  =  DEL43_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DEL43_IN_AAG(cons(T99)) → DEL43_IN_AAG(T99)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DEL43_IN_AAG(cons(T99)) → DEL43_IN_AAG(T99)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL34_IN_AGA(X261, cons(T82, T84), cons(T82, X262)) → DEL34_IN_AGA(X261, T84, X262)

The TRS R consists of the following rules:

delc6_in_aga(X53, cons(X53, T20), T20) → delc6_out_aga(X53, cons(X53, T20), T20)
delc6_in_aga(X72, cons(T25, T26), cons(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, cons(T25, T26), cons(T25, X73))
delc18_in_aag(X127, cons(X127, T43), T43) → delc18_out_aag(X127, cons(X127, T43), T43)
delc18_in_aag(X147, cons(X148, X149), cons(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, cons(X148, X149), cons(X148, T46))
delc34_in_aga(X242, cons(X242, T77), T77) → delc34_out_aga(X242, cons(X242, T77), T77)
delc34_in_aga(X261, cons(T82, T84), cons(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, cons(T82, T84), cons(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, cons(X304, T95), T95) → delc43_out_aag(X304, cons(X304, T95), T95)
delc43_in_aag(X324, cons(X325, X326), cons(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, cons(X325, X326), cons(X325, T99))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
delc6_in_aga(x1, x2, x3)  =  delc6_in_aga(x2)
delc6_out_aga(x1, x2, x3)  =  delc6_out_aga(x2, x3)
U20_aga(x1, x2, x3, x4, x5)  =  U20_aga(x3, x5)
delc18_in_aag(x1, x2, x3)  =  delc18_in_aag(x3)
delc18_out_aag(x1, x2, x3)  =  delc18_out_aag(x2, x3)
U21_aag(x1, x2, x3, x4, x5)  =  U21_aag(x4, x5)
delc34_in_aga(x1, x2, x3)  =  delc34_in_aga(x2)
delc34_out_aga(x1, x2, x3)  =  delc34_out_aga(x2, x3)
U22_aga(x1, x2, x3, x4, x5)  =  U22_aga(x3, x5)
del2c29_in_ga(x1, x2)  =  del2c29_in_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
U28_ga(x1, x2, x3)  =  U28_ga(x1, x3)
del2c29_out_ga(x1, x2)  =  del2c29_out_ga(x1, x2)
delc43_in_aag(x1, x2, x3)  =  delc43_in_aag(x3)
delc43_out_aag(x1, x2, x3)  =  delc43_out_aag(x2, x3)
U26_aag(x1, x2, x3, x4, x5)  =  U26_aag(x4, x5)
DEL34_IN_AGA(x1, x2, x3)  =  DEL34_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL34_IN_AGA(X261, cons(T82, T84), cons(T82, X262)) → DEL34_IN_AGA(X261, T84, X262)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
DEL34_IN_AGA(x1, x2, x3)  =  DEL34_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DEL34_IN_AGA(cons(T84)) → DEL34_IN_AGA(T84)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DEL34_IN_AGA(cons(T84)) → DEL34_IN_AGA(T84)
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T88, T89, T56))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → CONF19_IN_G(T89)

The TRS R consists of the following rules:

delc6_in_aga(X53, cons(X53, T20), T20) → delc6_out_aga(X53, cons(X53, T20), T20)
delc6_in_aga(X72, cons(T25, T26), cons(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, cons(T25, T26), cons(T25, X73))
delc18_in_aag(X127, cons(X127, T43), T43) → delc18_out_aag(X127, cons(X127, T43), T43)
delc18_in_aag(X147, cons(X148, X149), cons(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, cons(X148, X149), cons(X148, T46))
delc34_in_aga(X242, cons(X242, T77), T77) → delc34_out_aga(X242, cons(X242, T77), T77)
delc34_in_aga(X261, cons(T82, T84), cons(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, cons(T82, T84), cons(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, cons(X304, T95), T95) → delc43_out_aag(X304, cons(X304, T95), T95)
delc43_in_aag(X324, cons(X325, X326), cons(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, cons(X325, X326), cons(X325, T99))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
delc6_in_aga(x1, x2, x3)  =  delc6_in_aga(x2)
delc6_out_aga(x1, x2, x3)  =  delc6_out_aga(x2, x3)
U20_aga(x1, x2, x3, x4, x5)  =  U20_aga(x3, x5)
delc18_in_aag(x1, x2, x3)  =  delc18_in_aag(x3)
delc18_out_aag(x1, x2, x3)  =  delc18_out_aag(x2, x3)
U21_aag(x1, x2, x3, x4, x5)  =  U21_aag(x4, x5)
delc34_in_aga(x1, x2, x3)  =  delc34_in_aga(x2)
delc34_out_aga(x1, x2, x3)  =  delc34_out_aga(x2, x3)
U22_aga(x1, x2, x3, x4, x5)  =  U22_aga(x3, x5)
del2c29_in_ga(x1, x2)  =  del2c29_in_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
U28_ga(x1, x2, x3)  =  U28_ga(x1, x3)
del2c29_out_ga(x1, x2)  =  del2c29_out_ga(x1, x2)
delc43_in_aag(x1, x2, x3)  =  delc43_in_aag(x3)
delc43_out_aag(x1, x2, x3)  =  delc43_out_aag(x2, x3)
U26_aag(x1, x2, x3, x4, x5)  =  U26_aag(x4, x5)
CONF19_IN_G(x1)  =  CONF19_IN_G(x1)
U7_G(x1, x2)  =  U7_G(x1, x2)
U9_G(x1, x2)  =  U9_G(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54, T56))
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T88, T89, T56))
U9_G(T54, delc43_out_aag(T88, T89, T56)) → CONF19_IN_G(T89)

The TRS R consists of the following rules:

del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
delc43_in_aag(X304, cons(X304, T95), T95) → delc43_out_aag(X304, cons(X304, T95), T95)
delc43_in_aag(X324, cons(X325, X326), cons(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, cons(X325, X326), cons(X325, T99))
delc34_in_aga(X242, cons(X242, T77), T77) → delc34_out_aga(X242, cons(X242, T77), T77)
delc34_in_aga(X261, cons(T82, T84), cons(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, cons(T82, T84), cons(T82, X262))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
delc34_in_aga(x1, x2, x3)  =  delc34_in_aga(x2)
delc34_out_aga(x1, x2, x3)  =  delc34_out_aga(x2, x3)
U22_aga(x1, x2, x3, x4, x5)  =  U22_aga(x3, x5)
del2c29_in_ga(x1, x2)  =  del2c29_in_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
U28_ga(x1, x2, x3)  =  U28_ga(x1, x3)
del2c29_out_ga(x1, x2)  =  del2c29_out_ga(x1, x2)
delc43_in_aag(x1, x2, x3)  =  delc43_in_aag(x3)
delc43_out_aag(x1, x2, x3)  =  delc43_out_aag(x2, x3)
U26_aag(x1, x2, x3, x4, x5)  =  U26_aag(x4, x5)
CONF19_IN_G(x1)  =  CONF19_IN_G(x1)
U7_G(x1, x2)  =  U7_G(x1, x2)
U9_G(x1, x2)  =  U9_G(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54))
U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T56))
U9_G(T54, delc43_out_aag(T89, T56)) → CONF19_IN_G(T89)

The TRS R consists of the following rules:

del2c29_in_ga(T64) → U27_ga(T64, delc34_in_aga(T64))
delc43_in_aag(T95) → delc43_out_aag(cons(T95), T95)
delc43_in_aag(cons(T99)) → U26_aag(T99, delc43_in_aag(T99))
U27_ga(T64, delc34_out_aga(T64, T68)) → U28_ga(T64, delc34_in_aga(T68))
U26_aag(T99, delc43_out_aag(X326, T99)) → delc43_out_aag(cons(X326), cons(T99))
delc34_in_aga(cons(T77)) → delc34_out_aga(cons(T77), T77)
delc34_in_aga(cons(T84)) → U22_aga(T84, delc34_in_aga(T84))
U28_ga(T64, delc34_out_aga(T68, X209)) → del2c29_out_ga(T64, X209)
U22_aga(T84, delc34_out_aga(T84, X262)) → delc34_out_aga(cons(T84), cons(X262))

The set Q consists of the following terms:

del2c29_in_ga(x0)
delc43_in_aag(x0)
U27_ga(x0, x1)
U26_aag(x0, x1)
delc34_in_aga(x0)
U28_ga(x0, x1)
U22_aga(x0, x1)

We have to consider all (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U7_G(T54, del2c29_out_ga(T54, T56)) → U9_G(T54, delc43_in_aag(T56))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:

POL( U7_G(x1, x2) ) = max{0, 2x2 - 1}


POL( del2c29_in_ga(x1) ) = x1


POL( U27_ga(x1, x2) ) = max{0, x2 - 1}


POL( delc34_in_aga(x1) ) = x1 + 1


POL( U9_G(x1, x2) ) = x2 + 2


POL( delc43_in_aag(x1) ) = 2x1


POL( delc43_out_aag(x1, x2) ) = max{0, 2x1 - 2}


POL( cons(x1) ) = x1 + 1


POL( U26_aag(x1, x2) ) = x2 + 2


POL( U28_ga(x1, x2) ) = x2


POL( delc34_out_aga(x1, x2) ) = x2 + 2


POL( U22_aga(x1, x2) ) = x2 + 1


POL( del2c29_out_ga(x1, x2) ) = x2 + 2


POL( CONF19_IN_G(x1) ) = 2x1



The following usable rules [FROCOS05] were oriented:

del2c29_in_ga(T64) → U27_ga(T64, delc34_in_aga(T64))
delc43_in_aag(T95) → delc43_out_aag(cons(T95), T95)
delc43_in_aag(cons(T99)) → U26_aag(T99, delc43_in_aag(T99))
delc34_in_aga(cons(T77)) → delc34_out_aga(cons(T77), T77)
delc34_in_aga(cons(T84)) → U22_aga(T84, delc34_in_aga(T84))
U27_ga(T64, delc34_out_aga(T64, T68)) → U28_ga(T64, delc34_in_aga(T68))
U26_aag(T99, delc43_out_aag(X326, T99)) → delc43_out_aag(cons(X326), cons(T99))
U28_ga(T64, delc34_out_aga(T68, X209)) → del2c29_out_ga(T64, X209)
U22_aga(T84, delc34_out_aga(T84, X262)) → delc34_out_aga(cons(T84), cons(X262))

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONF19_IN_G(T54) → U7_G(T54, del2c29_in_ga(T54))
U9_G(T54, delc43_out_aag(T89, T56)) → CONF19_IN_G(T89)

The TRS R consists of the following rules:

del2c29_in_ga(T64) → U27_ga(T64, delc34_in_aga(T64))
delc43_in_aag(T95) → delc43_out_aag(cons(T95), T95)
delc43_in_aag(cons(T99)) → U26_aag(T99, delc43_in_aag(T99))
U27_ga(T64, delc34_out_aga(T64, T68)) → U28_ga(T64, delc34_in_aga(T68))
U26_aag(T99, delc43_out_aag(X326, T99)) → delc43_out_aag(cons(X326), cons(T99))
delc34_in_aga(cons(T77)) → delc34_out_aga(cons(T77), T77)
delc34_in_aga(cons(T84)) → U22_aga(T84, delc34_in_aga(T84))
U28_ga(T64, delc34_out_aga(T68, X209)) → del2c29_out_ga(T64, X209)
U22_aga(T84, delc34_out_aga(T84, X262)) → delc34_out_aga(cons(T84), cons(X262))

The set Q consists of the following terms:

del2c29_in_ga(x0)
delc43_in_aag(x0)
U27_ga(x0, x1)
U26_aag(x0, x1)
delc34_in_aga(x0)
U28_ga(x0, x1)
U22_aga(x0, x1)

We have to consider all (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(29) TRUE

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL18_IN_AAG(X147, cons(X148, X149), cons(X148, T46)) → DEL18_IN_AAG(X147, X149, T46)

The TRS R consists of the following rules:

delc6_in_aga(X53, cons(X53, T20), T20) → delc6_out_aga(X53, cons(X53, T20), T20)
delc6_in_aga(X72, cons(T25, T26), cons(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, cons(T25, T26), cons(T25, X73))
delc18_in_aag(X127, cons(X127, T43), T43) → delc18_out_aag(X127, cons(X127, T43), T43)
delc18_in_aag(X147, cons(X148, X149), cons(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, cons(X148, X149), cons(X148, T46))
delc34_in_aga(X242, cons(X242, T77), T77) → delc34_out_aga(X242, cons(X242, T77), T77)
delc34_in_aga(X261, cons(T82, T84), cons(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, cons(T82, T84), cons(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, cons(X304, T95), T95) → delc43_out_aag(X304, cons(X304, T95), T95)
delc43_in_aag(X324, cons(X325, X326), cons(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, cons(X325, X326), cons(X325, T99))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
delc6_in_aga(x1, x2, x3)  =  delc6_in_aga(x2)
delc6_out_aga(x1, x2, x3)  =  delc6_out_aga(x2, x3)
U20_aga(x1, x2, x3, x4, x5)  =  U20_aga(x3, x5)
delc18_in_aag(x1, x2, x3)  =  delc18_in_aag(x3)
delc18_out_aag(x1, x2, x3)  =  delc18_out_aag(x2, x3)
U21_aag(x1, x2, x3, x4, x5)  =  U21_aag(x4, x5)
delc34_in_aga(x1, x2, x3)  =  delc34_in_aga(x2)
delc34_out_aga(x1, x2, x3)  =  delc34_out_aga(x2, x3)
U22_aga(x1, x2, x3, x4, x5)  =  U22_aga(x3, x5)
del2c29_in_ga(x1, x2)  =  del2c29_in_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
U28_ga(x1, x2, x3)  =  U28_ga(x1, x3)
del2c29_out_ga(x1, x2)  =  del2c29_out_ga(x1, x2)
delc43_in_aag(x1, x2, x3)  =  delc43_in_aag(x3)
delc43_out_aag(x1, x2, x3)  =  delc43_out_aag(x2, x3)
U26_aag(x1, x2, x3, x4, x5)  =  U26_aag(x4, x5)
DEL18_IN_AAG(x1, x2, x3)  =  DEL18_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL18_IN_AAG(X147, cons(X148, X149), cons(X148, T46)) → DEL18_IN_AAG(X147, X149, T46)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
DEL18_IN_AAG(x1, x2, x3)  =  DEL18_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DEL18_IN_AAG(cons(T46)) → DEL18_IN_AAG(T46)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(35) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DEL18_IN_AAG(cons(T46)) → DEL18_IN_AAG(T46)
    The graph contains the following edges 1 > 1

(36) YES

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL6_IN_AGA(X72, cons(T25, T26), cons(T25, X73)) → DEL6_IN_AGA(X72, T26, X73)

The TRS R consists of the following rules:

delc6_in_aga(X53, cons(X53, T20), T20) → delc6_out_aga(X53, cons(X53, T20), T20)
delc6_in_aga(X72, cons(T25, T26), cons(T25, X73)) → U20_aga(X72, T25, T26, X73, delc6_in_aga(X72, T26, X73))
U20_aga(X72, T25, T26, X73, delc6_out_aga(X72, T26, X73)) → delc6_out_aga(X72, cons(T25, T26), cons(T25, X73))
delc18_in_aag(X127, cons(X127, T43), T43) → delc18_out_aag(X127, cons(X127, T43), T43)
delc18_in_aag(X147, cons(X148, X149), cons(X148, T46)) → U21_aag(X147, X148, X149, T46, delc18_in_aag(X147, X149, T46))
U21_aag(X147, X148, X149, T46, delc18_out_aag(X147, X149, T46)) → delc18_out_aag(X147, cons(X148, X149), cons(X148, T46))
delc34_in_aga(X242, cons(X242, T77), T77) → delc34_out_aga(X242, cons(X242, T77), T77)
delc34_in_aga(X261, cons(T82, T84), cons(T82, X262)) → U22_aga(X261, T82, T84, X262, delc34_in_aga(X261, T84, X262))
U22_aga(X261, T82, T84, X262, delc34_out_aga(X261, T84, X262)) → delc34_out_aga(X261, cons(T82, T84), cons(T82, X262))
del2c29_in_ga(T64, X209) → U27_ga(T64, X209, delc34_in_aga(T67, T64, T68))
U27_ga(T64, X209, delc34_out_aga(T67, T64, T68)) → U28_ga(T64, X209, delc34_in_aga(X208, T68, X209))
U28_ga(T64, X209, delc34_out_aga(X208, T68, X209)) → del2c29_out_ga(T64, X209)
delc43_in_aag(X304, cons(X304, T95), T95) → delc43_out_aag(X304, cons(X304, T95), T95)
delc43_in_aag(X324, cons(X325, X326), cons(X325, T99)) → U26_aag(X324, X325, X326, T99, delc43_in_aag(X324, X326, T99))
U26_aag(X324, X325, X326, T99, delc43_out_aag(X324, X326, T99)) → delc43_out_aag(X324, cons(X325, X326), cons(X325, T99))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
delc6_in_aga(x1, x2, x3)  =  delc6_in_aga(x2)
delc6_out_aga(x1, x2, x3)  =  delc6_out_aga(x2, x3)
U20_aga(x1, x2, x3, x4, x5)  =  U20_aga(x3, x5)
delc18_in_aag(x1, x2, x3)  =  delc18_in_aag(x3)
delc18_out_aag(x1, x2, x3)  =  delc18_out_aag(x2, x3)
U21_aag(x1, x2, x3, x4, x5)  =  U21_aag(x4, x5)
delc34_in_aga(x1, x2, x3)  =  delc34_in_aga(x2)
delc34_out_aga(x1, x2, x3)  =  delc34_out_aga(x2, x3)
U22_aga(x1, x2, x3, x4, x5)  =  U22_aga(x3, x5)
del2c29_in_ga(x1, x2)  =  del2c29_in_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
U28_ga(x1, x2, x3)  =  U28_ga(x1, x3)
del2c29_out_ga(x1, x2)  =  del2c29_out_ga(x1, x2)
delc43_in_aag(x1, x2, x3)  =  delc43_in_aag(x3)
delc43_out_aag(x1, x2, x3)  =  delc43_out_aag(x2, x3)
U26_aag(x1, x2, x3, x4, x5)  =  U26_aag(x4, x5)
DEL6_IN_AGA(x1, x2, x3)  =  DEL6_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(38) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(39) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL6_IN_AGA(X72, cons(T25, T26), cons(T25, X73)) → DEL6_IN_AGA(X72, T26, X73)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x2)
DEL6_IN_AGA(x1, x2, x3)  =  DEL6_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(40) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DEL6_IN_AGA(cons(T26)) → DEL6_IN_AGA(T26)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(42) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DEL6_IN_AGA(cons(T26)) → DEL6_IN_AGA(T26)
    The graph contains the following edges 1 > 1

(43) YES