(0) Obligation:
Clauses:
list([]).
list(.(X, XS)) :- list(XS).
s2l(s(X), .(Y, Xs)) :- s2l(X, Xs).
s2l(0, []).
goal(X) :- ','(s2l(X, XS), list(XS)).
Queries:
goal(g).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
s2l9(s(T16), .(X65, X66)) :- s2l9(T16, X66).
s2l9(0, []).
list21([]).
list21(.(T28, T30)) :- list21(T30).
goal1(s(T8)) :- s2l9(T8, X28).
goal1(s(T8)) :- ','(s2l9(T8, T23), list21(T23)).
goal1(0).
Queries:
goal1(g).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
goal1_in: (b)
s2l9_in: (b,f)
list21_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal1_in_g(s(T8)) → U3_g(T8, s2l9_in_ga(T8, X28))
s2l9_in_ga(s(T16), .(X65, X66)) → U1_ga(T16, X65, X66, s2l9_in_ga(T16, X66))
s2l9_in_ga(0, []) → s2l9_out_ga(0, [])
U1_ga(T16, X65, X66, s2l9_out_ga(T16, X66)) → s2l9_out_ga(s(T16), .(X65, X66))
U3_g(T8, s2l9_out_ga(T8, X28)) → goal1_out_g(s(T8))
goal1_in_g(s(T8)) → U4_g(T8, s2l9_in_ga(T8, T23))
U4_g(T8, s2l9_out_ga(T8, T23)) → U5_g(T8, list21_in_g(T23))
list21_in_g([]) → list21_out_g([])
list21_in_g(.(T28, T30)) → U2_g(T28, T30, list21_in_g(T30))
U2_g(T28, T30, list21_out_g(T30)) → list21_out_g(.(T28, T30))
U5_g(T8, list21_out_g(T23)) → goal1_out_g(s(T8))
goal1_in_g(0) → goal1_out_g(0)
The argument filtering Pi contains the following mapping:
goal1_in_g(
x1) =
goal1_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
s2l9_in_ga(
x1,
x2) =
s2l9_in_ga(
x1)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x4)
0 =
0
s2l9_out_ga(
x1,
x2) =
s2l9_out_ga(
x2)
.(
x1,
x2) =
.(
x2)
goal1_out_g(
x1) =
goal1_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
list21_in_g(
x1) =
list21_in_g(
x1)
[] =
[]
list21_out_g(
x1) =
list21_out_g
U2_g(
x1,
x2,
x3) =
U2_g(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal1_in_g(s(T8)) → U3_g(T8, s2l9_in_ga(T8, X28))
s2l9_in_ga(s(T16), .(X65, X66)) → U1_ga(T16, X65, X66, s2l9_in_ga(T16, X66))
s2l9_in_ga(0, []) → s2l9_out_ga(0, [])
U1_ga(T16, X65, X66, s2l9_out_ga(T16, X66)) → s2l9_out_ga(s(T16), .(X65, X66))
U3_g(T8, s2l9_out_ga(T8, X28)) → goal1_out_g(s(T8))
goal1_in_g(s(T8)) → U4_g(T8, s2l9_in_ga(T8, T23))
U4_g(T8, s2l9_out_ga(T8, T23)) → U5_g(T8, list21_in_g(T23))
list21_in_g([]) → list21_out_g([])
list21_in_g(.(T28, T30)) → U2_g(T28, T30, list21_in_g(T30))
U2_g(T28, T30, list21_out_g(T30)) → list21_out_g(.(T28, T30))
U5_g(T8, list21_out_g(T23)) → goal1_out_g(s(T8))
goal1_in_g(0) → goal1_out_g(0)
The argument filtering Pi contains the following mapping:
goal1_in_g(
x1) =
goal1_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
s2l9_in_ga(
x1,
x2) =
s2l9_in_ga(
x1)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x4)
0 =
0
s2l9_out_ga(
x1,
x2) =
s2l9_out_ga(
x2)
.(
x1,
x2) =
.(
x2)
goal1_out_g(
x1) =
goal1_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
list21_in_g(
x1) =
list21_in_g(
x1)
[] =
[]
list21_out_g(
x1) =
list21_out_g
U2_g(
x1,
x2,
x3) =
U2_g(
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOAL1_IN_G(s(T8)) → U3_G(T8, s2l9_in_ga(T8, X28))
GOAL1_IN_G(s(T8)) → S2L9_IN_GA(T8, X28)
S2L9_IN_GA(s(T16), .(X65, X66)) → U1_GA(T16, X65, X66, s2l9_in_ga(T16, X66))
S2L9_IN_GA(s(T16), .(X65, X66)) → S2L9_IN_GA(T16, X66)
GOAL1_IN_G(s(T8)) → U4_G(T8, s2l9_in_ga(T8, T23))
U4_G(T8, s2l9_out_ga(T8, T23)) → U5_G(T8, list21_in_g(T23))
U4_G(T8, s2l9_out_ga(T8, T23)) → LIST21_IN_G(T23)
LIST21_IN_G(.(T28, T30)) → U2_G(T28, T30, list21_in_g(T30))
LIST21_IN_G(.(T28, T30)) → LIST21_IN_G(T30)
The TRS R consists of the following rules:
goal1_in_g(s(T8)) → U3_g(T8, s2l9_in_ga(T8, X28))
s2l9_in_ga(s(T16), .(X65, X66)) → U1_ga(T16, X65, X66, s2l9_in_ga(T16, X66))
s2l9_in_ga(0, []) → s2l9_out_ga(0, [])
U1_ga(T16, X65, X66, s2l9_out_ga(T16, X66)) → s2l9_out_ga(s(T16), .(X65, X66))
U3_g(T8, s2l9_out_ga(T8, X28)) → goal1_out_g(s(T8))
goal1_in_g(s(T8)) → U4_g(T8, s2l9_in_ga(T8, T23))
U4_g(T8, s2l9_out_ga(T8, T23)) → U5_g(T8, list21_in_g(T23))
list21_in_g([]) → list21_out_g([])
list21_in_g(.(T28, T30)) → U2_g(T28, T30, list21_in_g(T30))
U2_g(T28, T30, list21_out_g(T30)) → list21_out_g(.(T28, T30))
U5_g(T8, list21_out_g(T23)) → goal1_out_g(s(T8))
goal1_in_g(0) → goal1_out_g(0)
The argument filtering Pi contains the following mapping:
goal1_in_g(
x1) =
goal1_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
s2l9_in_ga(
x1,
x2) =
s2l9_in_ga(
x1)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x4)
0 =
0
s2l9_out_ga(
x1,
x2) =
s2l9_out_ga(
x2)
.(
x1,
x2) =
.(
x2)
goal1_out_g(
x1) =
goal1_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
list21_in_g(
x1) =
list21_in_g(
x1)
[] =
[]
list21_out_g(
x1) =
list21_out_g
U2_g(
x1,
x2,
x3) =
U2_g(
x3)
GOAL1_IN_G(
x1) =
GOAL1_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
S2L9_IN_GA(
x1,
x2) =
S2L9_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4) =
U1_GA(
x4)
U4_G(
x1,
x2) =
U4_G(
x2)
U5_G(
x1,
x2) =
U5_G(
x2)
LIST21_IN_G(
x1) =
LIST21_IN_G(
x1)
U2_G(
x1,
x2,
x3) =
U2_G(
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOAL1_IN_G(s(T8)) → U3_G(T8, s2l9_in_ga(T8, X28))
GOAL1_IN_G(s(T8)) → S2L9_IN_GA(T8, X28)
S2L9_IN_GA(s(T16), .(X65, X66)) → U1_GA(T16, X65, X66, s2l9_in_ga(T16, X66))
S2L9_IN_GA(s(T16), .(X65, X66)) → S2L9_IN_GA(T16, X66)
GOAL1_IN_G(s(T8)) → U4_G(T8, s2l9_in_ga(T8, T23))
U4_G(T8, s2l9_out_ga(T8, T23)) → U5_G(T8, list21_in_g(T23))
U4_G(T8, s2l9_out_ga(T8, T23)) → LIST21_IN_G(T23)
LIST21_IN_G(.(T28, T30)) → U2_G(T28, T30, list21_in_g(T30))
LIST21_IN_G(.(T28, T30)) → LIST21_IN_G(T30)
The TRS R consists of the following rules:
goal1_in_g(s(T8)) → U3_g(T8, s2l9_in_ga(T8, X28))
s2l9_in_ga(s(T16), .(X65, X66)) → U1_ga(T16, X65, X66, s2l9_in_ga(T16, X66))
s2l9_in_ga(0, []) → s2l9_out_ga(0, [])
U1_ga(T16, X65, X66, s2l9_out_ga(T16, X66)) → s2l9_out_ga(s(T16), .(X65, X66))
U3_g(T8, s2l9_out_ga(T8, X28)) → goal1_out_g(s(T8))
goal1_in_g(s(T8)) → U4_g(T8, s2l9_in_ga(T8, T23))
U4_g(T8, s2l9_out_ga(T8, T23)) → U5_g(T8, list21_in_g(T23))
list21_in_g([]) → list21_out_g([])
list21_in_g(.(T28, T30)) → U2_g(T28, T30, list21_in_g(T30))
U2_g(T28, T30, list21_out_g(T30)) → list21_out_g(.(T28, T30))
U5_g(T8, list21_out_g(T23)) → goal1_out_g(s(T8))
goal1_in_g(0) → goal1_out_g(0)
The argument filtering Pi contains the following mapping:
goal1_in_g(
x1) =
goal1_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
s2l9_in_ga(
x1,
x2) =
s2l9_in_ga(
x1)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x4)
0 =
0
s2l9_out_ga(
x1,
x2) =
s2l9_out_ga(
x2)
.(
x1,
x2) =
.(
x2)
goal1_out_g(
x1) =
goal1_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
list21_in_g(
x1) =
list21_in_g(
x1)
[] =
[]
list21_out_g(
x1) =
list21_out_g
U2_g(
x1,
x2,
x3) =
U2_g(
x3)
GOAL1_IN_G(
x1) =
GOAL1_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
S2L9_IN_GA(
x1,
x2) =
S2L9_IN_GA(
x1)
U1_GA(
x1,
x2,
x3,
x4) =
U1_GA(
x4)
U4_G(
x1,
x2) =
U4_G(
x2)
U5_G(
x1,
x2) =
U5_G(
x2)
LIST21_IN_G(
x1) =
LIST21_IN_G(
x1)
U2_G(
x1,
x2,
x3) =
U2_G(
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 7 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LIST21_IN_G(.(T28, T30)) → LIST21_IN_G(T30)
The TRS R consists of the following rules:
goal1_in_g(s(T8)) → U3_g(T8, s2l9_in_ga(T8, X28))
s2l9_in_ga(s(T16), .(X65, X66)) → U1_ga(T16, X65, X66, s2l9_in_ga(T16, X66))
s2l9_in_ga(0, []) → s2l9_out_ga(0, [])
U1_ga(T16, X65, X66, s2l9_out_ga(T16, X66)) → s2l9_out_ga(s(T16), .(X65, X66))
U3_g(T8, s2l9_out_ga(T8, X28)) → goal1_out_g(s(T8))
goal1_in_g(s(T8)) → U4_g(T8, s2l9_in_ga(T8, T23))
U4_g(T8, s2l9_out_ga(T8, T23)) → U5_g(T8, list21_in_g(T23))
list21_in_g([]) → list21_out_g([])
list21_in_g(.(T28, T30)) → U2_g(T28, T30, list21_in_g(T30))
U2_g(T28, T30, list21_out_g(T30)) → list21_out_g(.(T28, T30))
U5_g(T8, list21_out_g(T23)) → goal1_out_g(s(T8))
goal1_in_g(0) → goal1_out_g(0)
The argument filtering Pi contains the following mapping:
goal1_in_g(
x1) =
goal1_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
s2l9_in_ga(
x1,
x2) =
s2l9_in_ga(
x1)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x4)
0 =
0
s2l9_out_ga(
x1,
x2) =
s2l9_out_ga(
x2)
.(
x1,
x2) =
.(
x2)
goal1_out_g(
x1) =
goal1_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
list21_in_g(
x1) =
list21_in_g(
x1)
[] =
[]
list21_out_g(
x1) =
list21_out_g
U2_g(
x1,
x2,
x3) =
U2_g(
x3)
LIST21_IN_G(
x1) =
LIST21_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LIST21_IN_G(.(T28, T30)) → LIST21_IN_G(T30)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
LIST21_IN_G(
x1) =
LIST21_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LIST21_IN_G(.(T30)) → LIST21_IN_G(T30)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LIST21_IN_G(.(T30)) → LIST21_IN_G(T30)
The graph contains the following edges 1 > 1
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2L9_IN_GA(s(T16), .(X65, X66)) → S2L9_IN_GA(T16, X66)
The TRS R consists of the following rules:
goal1_in_g(s(T8)) → U3_g(T8, s2l9_in_ga(T8, X28))
s2l9_in_ga(s(T16), .(X65, X66)) → U1_ga(T16, X65, X66, s2l9_in_ga(T16, X66))
s2l9_in_ga(0, []) → s2l9_out_ga(0, [])
U1_ga(T16, X65, X66, s2l9_out_ga(T16, X66)) → s2l9_out_ga(s(T16), .(X65, X66))
U3_g(T8, s2l9_out_ga(T8, X28)) → goal1_out_g(s(T8))
goal1_in_g(s(T8)) → U4_g(T8, s2l9_in_ga(T8, T23))
U4_g(T8, s2l9_out_ga(T8, T23)) → U5_g(T8, list21_in_g(T23))
list21_in_g([]) → list21_out_g([])
list21_in_g(.(T28, T30)) → U2_g(T28, T30, list21_in_g(T30))
U2_g(T28, T30, list21_out_g(T30)) → list21_out_g(.(T28, T30))
U5_g(T8, list21_out_g(T23)) → goal1_out_g(s(T8))
goal1_in_g(0) → goal1_out_g(0)
The argument filtering Pi contains the following mapping:
goal1_in_g(
x1) =
goal1_in_g(
x1)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
s2l9_in_ga(
x1,
x2) =
s2l9_in_ga(
x1)
U1_ga(
x1,
x2,
x3,
x4) =
U1_ga(
x4)
0 =
0
s2l9_out_ga(
x1,
x2) =
s2l9_out_ga(
x2)
.(
x1,
x2) =
.(
x2)
goal1_out_g(
x1) =
goal1_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
list21_in_g(
x1) =
list21_in_g(
x1)
[] =
[]
list21_out_g(
x1) =
list21_out_g
U2_g(
x1,
x2,
x3) =
U2_g(
x3)
S2L9_IN_GA(
x1,
x2) =
S2L9_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2L9_IN_GA(s(T16), .(X65, X66)) → S2L9_IN_GA(T16, X66)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
.(
x1,
x2) =
.(
x2)
S2L9_IN_GA(
x1,
x2) =
S2L9_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2L9_IN_GA(s(T16)) → S2L9_IN_GA(T16)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S2L9_IN_GA(s(T16)) → S2L9_IN_GA(T16)
The graph contains the following edges 1 > 1
(22) YES