(0) Obligation:
Clauses:
avg(s(X), Y, Z) :- avg(X, s(Y), Z).
avg(X, s(s(s(Y))), s(Z)) :- avg(s(X), Y, Z).
avg(0, 0, 0).
avg(0, s(0), 0).
avg(0, s(s(0)), s(0)).
Queries:
avg(g,g,a).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
avg1(s(s(T23)), T24, T26) :- avg1(T23, s(s(T24)), T26).
avg1(s(T42), s(s(T43)), s(T45)) :- avg1(s(T42), T43, T45).
avg1(s(T61), s(s(s(T62))), s(T64)) :- avg1(s(s(T61)), T62, T64).
avg1(T95, s(s(s(T96))), s(T98)) :- avg1(T95, s(T96), T98).
avg1(T114, s(s(s(s(s(s(T115)))))), s(s(T117))) :- avg1(s(s(T114)), T115, T117).
Clauses:
avgc1(s(s(T23)), T24, T26) :- avgc1(T23, s(s(T24)), T26).
avgc1(s(T42), s(s(T43)), s(T45)) :- avgc1(s(T42), T43, T45).
avgc1(s(0), 0, 0).
avgc1(s(0), s(0), s(0)).
avgc1(s(T61), s(s(s(T62))), s(T64)) :- avgc1(s(s(T61)), T62, T64).
avgc1(T95, s(s(s(T96))), s(T98)) :- avgc1(T95, s(T96), T98).
avgc1(T114, s(s(s(s(s(s(T115)))))), s(s(T117))) :- avgc1(s(s(T114)), T115, T117).
avgc1(0, 0, 0).
avgc1(0, s(0), 0).
avgc1(0, s(s(0)), s(0)).
Afs:
avg1(x1, x2, x3) = avg1(x1, x2)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
avg1_in: (b,b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
AVG1_IN_GGA(s(s(T23)), T24, T26) → U1_GGA(T23, T24, T26, avg1_in_gga(T23, s(s(T24)), T26))
AVG1_IN_GGA(s(s(T23)), T24, T26) → AVG1_IN_GGA(T23, s(s(T24)), T26)
AVG1_IN_GGA(s(T42), s(s(T43)), s(T45)) → U2_GGA(T42, T43, T45, avg1_in_gga(s(T42), T43, T45))
AVG1_IN_GGA(s(T42), s(s(T43)), s(T45)) → AVG1_IN_GGA(s(T42), T43, T45)
AVG1_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → U3_GGA(T61, T62, T64, avg1_in_gga(s(s(T61)), T62, T64))
AVG1_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → AVG1_IN_GGA(s(s(T61)), T62, T64)
AVG1_IN_GGA(T95, s(s(s(T96))), s(T98)) → U4_GGA(T95, T96, T98, avg1_in_gga(T95, s(T96), T98))
AVG1_IN_GGA(T95, s(s(s(T96))), s(T98)) → AVG1_IN_GGA(T95, s(T96), T98)
AVG1_IN_GGA(T114, s(s(s(s(s(s(T115)))))), s(s(T117))) → U5_GGA(T114, T115, T117, avg1_in_gga(s(s(T114)), T115, T117))
AVG1_IN_GGA(T114, s(s(s(s(s(s(T115)))))), s(s(T117))) → AVG1_IN_GGA(s(s(T114)), T115, T117)
R is empty.
The argument filtering Pi contains the following mapping:
avg1_in_gga(
x1,
x2,
x3) =
avg1_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
AVG1_IN_GGA(
x1,
x2,
x3) =
AVG1_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG1_IN_GGA(s(s(T23)), T24, T26) → U1_GGA(T23, T24, T26, avg1_in_gga(T23, s(s(T24)), T26))
AVG1_IN_GGA(s(s(T23)), T24, T26) → AVG1_IN_GGA(T23, s(s(T24)), T26)
AVG1_IN_GGA(s(T42), s(s(T43)), s(T45)) → U2_GGA(T42, T43, T45, avg1_in_gga(s(T42), T43, T45))
AVG1_IN_GGA(s(T42), s(s(T43)), s(T45)) → AVG1_IN_GGA(s(T42), T43, T45)
AVG1_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → U3_GGA(T61, T62, T64, avg1_in_gga(s(s(T61)), T62, T64))
AVG1_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → AVG1_IN_GGA(s(s(T61)), T62, T64)
AVG1_IN_GGA(T95, s(s(s(T96))), s(T98)) → U4_GGA(T95, T96, T98, avg1_in_gga(T95, s(T96), T98))
AVG1_IN_GGA(T95, s(s(s(T96))), s(T98)) → AVG1_IN_GGA(T95, s(T96), T98)
AVG1_IN_GGA(T114, s(s(s(s(s(s(T115)))))), s(s(T117))) → U5_GGA(T114, T115, T117, avg1_in_gga(s(s(T114)), T115, T117))
AVG1_IN_GGA(T114, s(s(s(s(s(s(T115)))))), s(s(T117))) → AVG1_IN_GGA(s(s(T114)), T115, T117)
R is empty.
The argument filtering Pi contains the following mapping:
avg1_in_gga(
x1,
x2,
x3) =
avg1_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
AVG1_IN_GGA(
x1,
x2,
x3) =
AVG1_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG1_IN_GGA(s(T42), s(s(T43)), s(T45)) → AVG1_IN_GGA(s(T42), T43, T45)
AVG1_IN_GGA(s(s(T23)), T24, T26) → AVG1_IN_GGA(T23, s(s(T24)), T26)
AVG1_IN_GGA(s(T61), s(s(s(T62))), s(T64)) → AVG1_IN_GGA(s(s(T61)), T62, T64)
AVG1_IN_GGA(T95, s(s(s(T96))), s(T98)) → AVG1_IN_GGA(T95, s(T96), T98)
AVG1_IN_GGA(T114, s(s(s(s(s(s(T115)))))), s(s(T117))) → AVG1_IN_GGA(s(s(T114)), T115, T117)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
AVG1_IN_GGA(
x1,
x2,
x3) =
AVG1_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(7) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AVG1_IN_GGA(s(T42), s(s(T43))) → AVG1_IN_GGA(s(T42), T43)
AVG1_IN_GGA(s(s(T23)), T24) → AVG1_IN_GGA(T23, s(s(T24)))
AVG1_IN_GGA(s(T61), s(s(s(T62)))) → AVG1_IN_GGA(s(s(T61)), T62)
AVG1_IN_GGA(T95, s(s(s(T96)))) → AVG1_IN_GGA(T95, s(T96))
AVG1_IN_GGA(T114, s(s(s(s(s(s(T115))))))) → AVG1_IN_GGA(s(s(T114)), T115)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(9) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
AVG1_IN_GGA(s(T42), s(s(T43))) → AVG1_IN_GGA(s(T42), T43)
AVG1_IN_GGA(s(T61), s(s(s(T62)))) → AVG1_IN_GGA(s(s(T61)), T62)
AVG1_IN_GGA(T95, s(s(s(T96)))) → AVG1_IN_GGA(T95, s(T96))
AVG1_IN_GGA(T114, s(s(s(s(s(s(T115))))))) → AVG1_IN_GGA(s(s(T114)), T115)
Used ordering: Polynomial interpretation [POLO]:
POL(AVG1_IN_GGA(x1, x2)) = x1 + x2
POL(s(x1)) = 1 + x1
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AVG1_IN_GGA(s(s(T23)), T24) → AVG1_IN_GGA(T23, s(s(T24)))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- AVG1_IN_GGA(s(s(T23)), T24) → AVG1_IN_GGA(T23, s(s(T24)))
The graph contains the following edges 1 > 1
(12) YES