(0) Obligation:

Clauses:

avg(s(X), Y, Z) :- avg(X, s(Y), Z).
avg(X, s(s(s(Y))), s(Z)) :- avg(s(X), Y, Z).
avg(0, 0, 0).
avg(0, s(0), 0).
avg(0, s(s(0)), s(0)).

Queries:

avg(g,g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
avg_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x3)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(s(X), Y, Z) → U1_GGA(X, Y, Z, avg_in_gga(X, s(Y), Z))
AVG_IN_GGA(s(X), Y, Z) → AVG_IN_GGA(X, s(Y), Z)
AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → U2_GGA(X, Y, Z, avg_in_gga(s(X), Y, Z))
AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → AVG_IN_GGA(s(X), Y, Z)

The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x3)
AVG_IN_GGA(x1, x2, x3)  =  AVG_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(s(X), Y, Z) → U1_GGA(X, Y, Z, avg_in_gga(X, s(Y), Z))
AVG_IN_GGA(s(X), Y, Z) → AVG_IN_GGA(X, s(Y), Z)
AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → U2_GGA(X, Y, Z, avg_in_gga(s(X), Y, Z))
AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → AVG_IN_GGA(s(X), Y, Z)

The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x3)
AVG_IN_GGA(x1, x2, x3)  =  AVG_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → AVG_IN_GGA(s(X), Y, Z)
AVG_IN_GGA(s(X), Y, Z) → AVG_IN_GGA(X, s(Y), Z)

The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x3)
AVG_IN_GGA(x1, x2, x3)  =  AVG_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → AVG_IN_GGA(s(X), Y, Z)
AVG_IN_GGA(s(X), Y, Z) → AVG_IN_GGA(X, s(Y), Z)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
AVG_IN_GGA(x1, x2, x3)  =  AVG_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(X, s(s(s(Y)))) → AVG_IN_GGA(s(X), Y)
AVG_IN_GGA(s(X), Y) → AVG_IN_GGA(X, s(Y))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

AVG_IN_GGA(X, s(s(s(Y)))) → AVG_IN_GGA(s(X), Y)


Used ordering: Polynomial interpretation [POLO]:

POL(AVG_IN_GGA(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(s(X), Y) → AVG_IN_GGA(X, s(Y))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • AVG_IN_GGA(s(X), Y) → AVG_IN_GGA(X, s(Y))
    The graph contains the following edges 1 > 1

(14) TRUE

(15) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
avg_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x1, x2, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(16) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x1, x2, x3)

(17) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(s(X), Y, Z) → U1_GGA(X, Y, Z, avg_in_gga(X, s(Y), Z))
AVG_IN_GGA(s(X), Y, Z) → AVG_IN_GGA(X, s(Y), Z)
AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → U2_GGA(X, Y, Z, avg_in_gga(s(X), Y, Z))
AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → AVG_IN_GGA(s(X), Y, Z)

The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x1, x2, x3)
AVG_IN_GGA(x1, x2, x3)  =  AVG_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(s(X), Y, Z) → U1_GGA(X, Y, Z, avg_in_gga(X, s(Y), Z))
AVG_IN_GGA(s(X), Y, Z) → AVG_IN_GGA(X, s(Y), Z)
AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → U2_GGA(X, Y, Z, avg_in_gga(s(X), Y, Z))
AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → AVG_IN_GGA(s(X), Y, Z)

The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x1, x2, x3)
AVG_IN_GGA(x1, x2, x3)  =  AVG_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(19) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → AVG_IN_GGA(s(X), Y, Z)
AVG_IN_GGA(s(X), Y, Z) → AVG_IN_GGA(X, s(Y), Z)

The TRS R consists of the following rules:

avg_in_gga(s(X), Y, Z) → U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z))
avg_in_gga(X, s(s(s(Y))), s(Z)) → U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z))
avg_in_gga(0, 0, 0) → avg_out_gga(0, 0, 0)
avg_in_gga(0, s(0), 0) → avg_out_gga(0, s(0), 0)
avg_in_gga(0, s(s(0)), s(0)) → avg_out_gga(0, s(s(0)), s(0))
U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) → avg_out_gga(X, s(s(s(Y))), s(Z))
U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) → avg_out_gga(s(X), Y, Z)

The argument filtering Pi contains the following mapping:
avg_in_gga(x1, x2, x3)  =  avg_in_gga(x1, x2)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
0  =  0
avg_out_gga(x1, x2, x3)  =  avg_out_gga(x1, x2, x3)
AVG_IN_GGA(x1, x2, x3)  =  AVG_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(21) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(22) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(X, s(s(s(Y))), s(Z)) → AVG_IN_GGA(s(X), Y, Z)
AVG_IN_GGA(s(X), Y, Z) → AVG_IN_GGA(X, s(Y), Z)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
AVG_IN_GGA(x1, x2, x3)  =  AVG_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(23) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(X, s(s(s(Y)))) → AVG_IN_GGA(s(X), Y)
AVG_IN_GGA(s(X), Y) → AVG_IN_GGA(X, s(Y))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(25) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

AVG_IN_GGA(X, s(s(s(Y)))) → AVG_IN_GGA(s(X), Y)


Used ordering: Polynomial interpretation [POLO]:

POL(AVG_IN_GGA(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AVG_IN_GGA(s(X), Y) → AVG_IN_GGA(X, s(Y))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.