(0) Obligation:
Clauses:
avg(s(X), Y, Z) :- avg(X, s(Y), Z).
avg(X, s(s(s(Y))), s(Z)) :- avg(s(X), Y, Z).
avg(0, 0, 0).
avg(0, s(0), 0).
avg(0, s(s(0)), s(0)).
Queries:
avg(g,a,g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
avg1(s(s(T23)), T26, T25) :- avg1(T23, s(s(T26)), T25).
avg1(s(T42), s(s(T45)), s(T44)) :- avg1(s(T42), T45, T44).
avg1(s(T61), s(s(s(T64))), s(T63)) :- avg1(s(s(T61)), T64, T63).
avg1(T95, s(s(s(T98))), s(T97)) :- avg1(T95, s(T98), T97).
avg1(T114, s(s(s(s(s(s(T117)))))), s(s(T116))) :- avg1(s(s(T114)), T117, T116).
Clauses:
avgc1(s(s(T23)), T26, T25) :- avgc1(T23, s(s(T26)), T25).
avgc1(s(T42), s(s(T45)), s(T44)) :- avgc1(s(T42), T45, T44).
avgc1(s(0), 0, 0).
avgc1(s(0), s(0), s(0)).
avgc1(s(T61), s(s(s(T64))), s(T63)) :- avgc1(s(s(T61)), T64, T63).
avgc1(T95, s(s(s(T98))), s(T97)) :- avgc1(T95, s(T98), T97).
avgc1(T114, s(s(s(s(s(s(T117)))))), s(s(T116))) :- avgc1(s(s(T114)), T117, T116).
avgc1(0, s(s(0)), s(0)).
avgc1(0, 0, 0).
avgc1(0, s(0), 0).
avgc1(0, s(0), 0).
avgc1(0, s(s(0)), s(0)).
Afs:
avg1(x1, x2, x3) = avg1(x1, x3)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
avg1_in: (b,f,b)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
AVG1_IN_GAG(s(s(T23)), T26, T25) → U1_GAG(T23, T26, T25, avg1_in_gag(T23, s(s(T26)), T25))
AVG1_IN_GAG(s(s(T23)), T26, T25) → AVG1_IN_GAG(T23, s(s(T26)), T25)
AVG1_IN_GAG(s(T42), s(s(T45)), s(T44)) → U2_GAG(T42, T45, T44, avg1_in_gag(s(T42), T45, T44))
AVG1_IN_GAG(s(T42), s(s(T45)), s(T44)) → AVG1_IN_GAG(s(T42), T45, T44)
AVG1_IN_GAG(s(T61), s(s(s(T64))), s(T63)) → U3_GAG(T61, T64, T63, avg1_in_gag(s(s(T61)), T64, T63))
AVG1_IN_GAG(s(T61), s(s(s(T64))), s(T63)) → AVG1_IN_GAG(s(s(T61)), T64, T63)
AVG1_IN_GAG(T95, s(s(s(T98))), s(T97)) → U4_GAG(T95, T98, T97, avg1_in_gag(T95, s(T98), T97))
AVG1_IN_GAG(T95, s(s(s(T98))), s(T97)) → AVG1_IN_GAG(T95, s(T98), T97)
AVG1_IN_GAG(T114, s(s(s(s(s(s(T117)))))), s(s(T116))) → U5_GAG(T114, T117, T116, avg1_in_gag(s(s(T114)), T117, T116))
AVG1_IN_GAG(T114, s(s(s(s(s(s(T117)))))), s(s(T116))) → AVG1_IN_GAG(s(s(T114)), T117, T116)
R is empty.
The argument filtering Pi contains the following mapping:
avg1_in_gag(
x1,
x2,
x3) =
avg1_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
AVG1_IN_GAG(
x1,
x2,
x3) =
AVG1_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3,
x4) =
U1_GAG(
x1,
x3,
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x1,
x3,
x4)
U4_GAG(
x1,
x2,
x3,
x4) =
U4_GAG(
x1,
x3,
x4)
U5_GAG(
x1,
x2,
x3,
x4) =
U5_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG1_IN_GAG(s(s(T23)), T26, T25) → U1_GAG(T23, T26, T25, avg1_in_gag(T23, s(s(T26)), T25))
AVG1_IN_GAG(s(s(T23)), T26, T25) → AVG1_IN_GAG(T23, s(s(T26)), T25)
AVG1_IN_GAG(s(T42), s(s(T45)), s(T44)) → U2_GAG(T42, T45, T44, avg1_in_gag(s(T42), T45, T44))
AVG1_IN_GAG(s(T42), s(s(T45)), s(T44)) → AVG1_IN_GAG(s(T42), T45, T44)
AVG1_IN_GAG(s(T61), s(s(s(T64))), s(T63)) → U3_GAG(T61, T64, T63, avg1_in_gag(s(s(T61)), T64, T63))
AVG1_IN_GAG(s(T61), s(s(s(T64))), s(T63)) → AVG1_IN_GAG(s(s(T61)), T64, T63)
AVG1_IN_GAG(T95, s(s(s(T98))), s(T97)) → U4_GAG(T95, T98, T97, avg1_in_gag(T95, s(T98), T97))
AVG1_IN_GAG(T95, s(s(s(T98))), s(T97)) → AVG1_IN_GAG(T95, s(T98), T97)
AVG1_IN_GAG(T114, s(s(s(s(s(s(T117)))))), s(s(T116))) → U5_GAG(T114, T117, T116, avg1_in_gag(s(s(T114)), T117, T116))
AVG1_IN_GAG(T114, s(s(s(s(s(s(T117)))))), s(s(T116))) → AVG1_IN_GAG(s(s(T114)), T117, T116)
R is empty.
The argument filtering Pi contains the following mapping:
avg1_in_gag(
x1,
x2,
x3) =
avg1_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
AVG1_IN_GAG(
x1,
x2,
x3) =
AVG1_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3,
x4) =
U1_GAG(
x1,
x3,
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
U3_GAG(
x1,
x2,
x3,
x4) =
U3_GAG(
x1,
x3,
x4)
U4_GAG(
x1,
x2,
x3,
x4) =
U4_GAG(
x1,
x3,
x4)
U5_GAG(
x1,
x2,
x3,
x4) =
U5_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG1_IN_GAG(s(T42), s(s(T45)), s(T44)) → AVG1_IN_GAG(s(T42), T45, T44)
AVG1_IN_GAG(s(s(T23)), T26, T25) → AVG1_IN_GAG(T23, s(s(T26)), T25)
AVG1_IN_GAG(s(T61), s(s(s(T64))), s(T63)) → AVG1_IN_GAG(s(s(T61)), T64, T63)
AVG1_IN_GAG(T95, s(s(s(T98))), s(T97)) → AVG1_IN_GAG(T95, s(T98), T97)
AVG1_IN_GAG(T114, s(s(s(s(s(s(T117)))))), s(s(T116))) → AVG1_IN_GAG(s(s(T114)), T117, T116)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
AVG1_IN_GAG(
x1,
x2,
x3) =
AVG1_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(7) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AVG1_IN_GAG(s(T42), s(T44)) → AVG1_IN_GAG(s(T42), T44)
AVG1_IN_GAG(s(s(T23)), T25) → AVG1_IN_GAG(T23, T25)
AVG1_IN_GAG(s(T61), s(T63)) → AVG1_IN_GAG(s(s(T61)), T63)
AVG1_IN_GAG(T95, s(T97)) → AVG1_IN_GAG(T95, T97)
AVG1_IN_GAG(T114, s(s(T116))) → AVG1_IN_GAG(s(s(T114)), T116)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(9) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- AVG1_IN_GAG(s(T42), s(T44)) → AVG1_IN_GAG(s(T42), T44)
The graph contains the following edges 1 >= 1, 2 > 2
- AVG1_IN_GAG(s(s(T23)), T25) → AVG1_IN_GAG(T23, T25)
The graph contains the following edges 1 > 1, 2 >= 2
- AVG1_IN_GAG(s(T61), s(T63)) → AVG1_IN_GAG(s(s(T61)), T63)
The graph contains the following edges 2 > 2
- AVG1_IN_GAG(T95, s(T97)) → AVG1_IN_GAG(T95, T97)
The graph contains the following edges 1 >= 1, 2 > 2
- AVG1_IN_GAG(T114, s(s(T116))) → AVG1_IN_GAG(s(s(T114)), T116)
The graph contains the following edges 2 > 2
(10) YES