(0) Obligation:
Clauses:
avg(s(X), Y, Z) :- avg(X, s(Y), Z).
avg(X, s(s(s(Y))), s(Z)) :- avg(s(X), Y, Z).
avg(0, 0, 0).
avg(0, s(0), 0).
avg(0, s(s(0)), s(0)).
Queries:
avg(g,a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
avg_in: (b,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(s(X), Y, Z) → U1_GAG(X, Y, Z, avg_in_gag(X, s(Y), Z))
AVG_IN_GAG(s(X), Y, Z) → AVG_IN_GAG(X, s(Y), Z)
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → U2_GAG(X, Y, Z, avg_in_gag(s(X), Y, Z))
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → AVG_IN_GAG(s(X), Y, Z)
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x2)
AVG_IN_GAG(
x1,
x2,
x3) =
AVG_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3,
x4) =
U1_GAG(
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(s(X), Y, Z) → U1_GAG(X, Y, Z, avg_in_gag(X, s(Y), Z))
AVG_IN_GAG(s(X), Y, Z) → AVG_IN_GAG(X, s(Y), Z)
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → U2_GAG(X, Y, Z, avg_in_gag(s(X), Y, Z))
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → AVG_IN_GAG(s(X), Y, Z)
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x2)
AVG_IN_GAG(
x1,
x2,
x3) =
AVG_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3,
x4) =
U1_GAG(
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → AVG_IN_GAG(s(X), Y, Z)
AVG_IN_GAG(s(X), Y, Z) → AVG_IN_GAG(X, s(Y), Z)
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x2)
AVG_IN_GAG(
x1,
x2,
x3) =
AVG_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → AVG_IN_GAG(s(X), Y, Z)
AVG_IN_GAG(s(X), Y, Z) → AVG_IN_GAG(X, s(Y), Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
AVG_IN_GAG(
x1,
x2,
x3) =
AVG_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(X, s(Z)) → AVG_IN_GAG(s(X), Z)
AVG_IN_GAG(s(X), Z) → AVG_IN_GAG(X, Z)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- AVG_IN_GAG(X, s(Z)) → AVG_IN_GAG(s(X), Z)
The graph contains the following edges 2 > 2
- AVG_IN_GAG(s(X), Z) → AVG_IN_GAG(X, Z)
The graph contains the following edges 1 > 1, 2 >= 2
(12) TRUE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
avg_in: (b,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x1,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x1,
x2,
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x1,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x1,
x2,
x3)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(s(X), Y, Z) → U1_GAG(X, Y, Z, avg_in_gag(X, s(Y), Z))
AVG_IN_GAG(s(X), Y, Z) → AVG_IN_GAG(X, s(Y), Z)
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → U2_GAG(X, Y, Z, avg_in_gag(s(X), Y, Z))
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → AVG_IN_GAG(s(X), Y, Z)
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x1,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x1,
x2,
x3)
AVG_IN_GAG(
x1,
x2,
x3) =
AVG_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3,
x4) =
U1_GAG(
x1,
x3,
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(s(X), Y, Z) → U1_GAG(X, Y, Z, avg_in_gag(X, s(Y), Z))
AVG_IN_GAG(s(X), Y, Z) → AVG_IN_GAG(X, s(Y), Z)
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → U2_GAG(X, Y, Z, avg_in_gag(s(X), Y, Z))
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → AVG_IN_GAG(s(X), Y, Z)
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x1,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x1,
x2,
x3)
AVG_IN_GAG(
x1,
x2,
x3) =
AVG_IN_GAG(
x1,
x3)
U1_GAG(
x1,
x2,
x3,
x4) =
U1_GAG(
x1,
x3,
x4)
U2_GAG(
x1,
x2,
x3,
x4) =
U2_GAG(
x1,
x3,
x4)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → AVG_IN_GAG(s(X), Y, Z)
AVG_IN_GAG(s(X), Y, Z) → AVG_IN_GAG(X, s(Y), Z)
The TRS R consists of the following rules:
avg_in_gag(s(X), Y, Z) → U1_gag(X, Y, Z, avg_in_gag(X, s(Y), Z))
avg_in_gag(X, s(s(s(Y))), s(Z)) → U2_gag(X, Y, Z, avg_in_gag(s(X), Y, Z))
avg_in_gag(0, 0, 0) → avg_out_gag(0, 0, 0)
avg_in_gag(0, s(0), 0) → avg_out_gag(0, s(0), 0)
avg_in_gag(0, s(s(0)), s(0)) → avg_out_gag(0, s(s(0)), s(0))
U2_gag(X, Y, Z, avg_out_gag(s(X), Y, Z)) → avg_out_gag(X, s(s(s(Y))), s(Z))
U1_gag(X, Y, Z, avg_out_gag(X, s(Y), Z)) → avg_out_gag(s(X), Y, Z)
The argument filtering Pi contains the following mapping:
avg_in_gag(
x1,
x2,
x3) =
avg_in_gag(
x1,
x3)
s(
x1) =
s(
x1)
U1_gag(
x1,
x2,
x3,
x4) =
U1_gag(
x1,
x3,
x4)
U2_gag(
x1,
x2,
x3,
x4) =
U2_gag(
x1,
x3,
x4)
0 =
0
avg_out_gag(
x1,
x2,
x3) =
avg_out_gag(
x1,
x2,
x3)
AVG_IN_GAG(
x1,
x2,
x3) =
AVG_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(X, s(s(s(Y))), s(Z)) → AVG_IN_GAG(s(X), Y, Z)
AVG_IN_GAG(s(X), Y, Z) → AVG_IN_GAG(X, s(Y), Z)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
AVG_IN_GAG(
x1,
x2,
x3) =
AVG_IN_GAG(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
AVG_IN_GAG(X, s(Z)) → AVG_IN_GAG(s(X), Z)
AVG_IN_GAG(s(X), Z) → AVG_IN_GAG(X, Z)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.