(0) Obligation:

Clauses:

t(N) :- ','(ll(N, Xs), ','(select(X1, Xs, Xs1), ','(ll(M, Xs1), t(M)))).
t(0).
ll(s(N), .(X, Xs)) :- ll(N, Xs).
ll(0, []).
select(X, .(Y, Xs), .(Y, Ys)) :- select(X, Xs, Ys).
select(X, .(X, Xs), Xs).

Queries:

t(g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

ll9(s(T16), .(X69, X70)) :- ll9(T16, X70).
ll9(0, []).
select24(X174, .(T45, T47), .(T45, X175)) :- select24(X174, T47, X175).
select24(X194, .(X194, T52), T52).
ll35(s(X233), .(T69, T71)) :- ll35(X233, T71).
ll35(0, []).
p20(X7, T21) :- ll35(X7, T21).
p20(T58, T21) :- ','(ll35(T58, T21), t1(T58)).
select19(X137, X138, T34, .(X138, X139)) :- select24(X137, T34, X139).
select19(X205, X205, T55, T55).
t1(s(T8)) :- ll9(T8, X32).
t1(s(T8)) :- ','(ll9(T8, T10), select19(X5, X31, T10, X6)).
t1(s(T8)) :- ','(ll9(T8, T10), ','(select19(T19, T20, T10, T21), p20(X7, T21))).
t1(0).

Queries:

t1(g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
t1_in: (b)
ll9_in: (b,f)
select19_in: (f,f,b,f)
select24_in: (f,b,f)
p20_in: (f,b)
ll35_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

t1_in_g(s(T8)) → U8_g(T8, ll9_in_ga(T8, X32))
ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U8_g(T8, ll9_out_ga(T8, X32)) → t1_out_g(s(T8))
t1_in_g(s(T8)) → U9_g(T8, ll9_in_ga(T8, T10))
U9_g(T8, ll9_out_ga(T8, T10)) → U10_g(T8, select19_in_aaga(X5, X31, T10, X6))
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
U10_g(T8, select19_out_aaga(X5, X31, T10, X6)) → t1_out_g(s(T8))
U9_g(T8, ll9_out_ga(T8, T10)) → U11_g(T8, select19_in_aaga(T19, T20, T10, T21))
U11_g(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_g(T8, p20_in_ag(X7, T21))
p20_in_ag(X7, T21) → U4_ag(X7, T21, ll35_in_ag(X7, T21))
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
U4_ag(X7, T21, ll35_out_ag(X7, T21)) → p20_out_ag(X7, T21)
p20_in_ag(T58, T21) → U5_ag(T58, T21, ll35_in_ag(T58, T21))
U5_ag(T58, T21, ll35_out_ag(T58, T21)) → U6_ag(T58, T21, t1_in_g(T58))
t1_in_g(0) → t1_out_g(0)
U6_ag(T58, T21, t1_out_g(T58)) → p20_out_ag(T58, T21)
U12_g(T8, p20_out_ag(X7, T21)) → t1_out_g(s(T8))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
U8_g(x1, x2)  =  U8_g(x2)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
t1_out_g(x1)  =  t1_out_g
U9_g(x1, x2)  =  U9_g(x2)
U10_g(x1, x2)  =  U10_g(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
U11_g(x1, x2)  =  U11_g(x2)
U12_g(x1, x2)  =  U12_g(x2)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
U4_ag(x1, x2, x3)  =  U4_ag(x3)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
p20_out_ag(x1, x2)  =  p20_out_ag(x1)
U5_ag(x1, x2, x3)  =  U5_ag(x3)
U6_ag(x1, x2, x3)  =  U6_ag(x1, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

t1_in_g(s(T8)) → U8_g(T8, ll9_in_ga(T8, X32))
ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U8_g(T8, ll9_out_ga(T8, X32)) → t1_out_g(s(T8))
t1_in_g(s(T8)) → U9_g(T8, ll9_in_ga(T8, T10))
U9_g(T8, ll9_out_ga(T8, T10)) → U10_g(T8, select19_in_aaga(X5, X31, T10, X6))
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
U10_g(T8, select19_out_aaga(X5, X31, T10, X6)) → t1_out_g(s(T8))
U9_g(T8, ll9_out_ga(T8, T10)) → U11_g(T8, select19_in_aaga(T19, T20, T10, T21))
U11_g(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_g(T8, p20_in_ag(X7, T21))
p20_in_ag(X7, T21) → U4_ag(X7, T21, ll35_in_ag(X7, T21))
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
U4_ag(X7, T21, ll35_out_ag(X7, T21)) → p20_out_ag(X7, T21)
p20_in_ag(T58, T21) → U5_ag(T58, T21, ll35_in_ag(T58, T21))
U5_ag(T58, T21, ll35_out_ag(T58, T21)) → U6_ag(T58, T21, t1_in_g(T58))
t1_in_g(0) → t1_out_g(0)
U6_ag(T58, T21, t1_out_g(T58)) → p20_out_ag(T58, T21)
U12_g(T8, p20_out_ag(X7, T21)) → t1_out_g(s(T8))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
U8_g(x1, x2)  =  U8_g(x2)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
t1_out_g(x1)  =  t1_out_g
U9_g(x1, x2)  =  U9_g(x2)
U10_g(x1, x2)  =  U10_g(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
U11_g(x1, x2)  =  U11_g(x2)
U12_g(x1, x2)  =  U12_g(x2)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
U4_ag(x1, x2, x3)  =  U4_ag(x3)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
p20_out_ag(x1, x2)  =  p20_out_ag(x1)
U5_ag(x1, x2, x3)  =  U5_ag(x3)
U6_ag(x1, x2, x3)  =  U6_ag(x1, x3)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U8_G(T8, ll9_in_ga(T8, X32))
T1_IN_G(s(T8)) → LL9_IN_GA(T8, X32)
LL9_IN_GA(s(T16), .(X69, X70)) → U1_GA(T16, X69, X70, ll9_in_ga(T16, X70))
LL9_IN_GA(s(T16), .(X69, X70)) → LL9_IN_GA(T16, X70)
T1_IN_G(s(T8)) → U9_G(T8, ll9_in_ga(T8, T10))
U9_G(T8, ll9_out_ga(T8, T10)) → U10_G(T8, select19_in_aaga(X5, X31, T10, X6))
U9_G(T8, ll9_out_ga(T8, T10)) → SELECT19_IN_AAGA(X5, X31, T10, X6)
SELECT19_IN_AAGA(X137, X138, T34, .(X138, X139)) → U7_AAGA(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
SELECT19_IN_AAGA(X137, X138, T34, .(X138, X139)) → SELECT24_IN_AGA(X137, T34, X139)
SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → U2_AGA(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → SELECT24_IN_AGA(X174, T47, X175)
U9_G(T8, ll9_out_ga(T8, T10)) → U11_G(T8, select19_in_aaga(T19, T20, T10, T21))
U11_G(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_G(T8, p20_in_ag(X7, T21))
U11_G(T8, select19_out_aaga(T19, T20, T10, T21)) → P20_IN_AG(X7, T21)
P20_IN_AG(X7, T21) → U4_AG(X7, T21, ll35_in_ag(X7, T21))
P20_IN_AG(X7, T21) → LL35_IN_AG(X7, T21)
LL35_IN_AG(s(X233), .(T69, T71)) → U3_AG(X233, T69, T71, ll35_in_ag(X233, T71))
LL35_IN_AG(s(X233), .(T69, T71)) → LL35_IN_AG(X233, T71)
P20_IN_AG(T58, T21) → U5_AG(T58, T21, ll35_in_ag(T58, T21))
U5_AG(T58, T21, ll35_out_ag(T58, T21)) → U6_AG(T58, T21, t1_in_g(T58))
U5_AG(T58, T21, ll35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

t1_in_g(s(T8)) → U8_g(T8, ll9_in_ga(T8, X32))
ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U8_g(T8, ll9_out_ga(T8, X32)) → t1_out_g(s(T8))
t1_in_g(s(T8)) → U9_g(T8, ll9_in_ga(T8, T10))
U9_g(T8, ll9_out_ga(T8, T10)) → U10_g(T8, select19_in_aaga(X5, X31, T10, X6))
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
U10_g(T8, select19_out_aaga(X5, X31, T10, X6)) → t1_out_g(s(T8))
U9_g(T8, ll9_out_ga(T8, T10)) → U11_g(T8, select19_in_aaga(T19, T20, T10, T21))
U11_g(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_g(T8, p20_in_ag(X7, T21))
p20_in_ag(X7, T21) → U4_ag(X7, T21, ll35_in_ag(X7, T21))
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
U4_ag(X7, T21, ll35_out_ag(X7, T21)) → p20_out_ag(X7, T21)
p20_in_ag(T58, T21) → U5_ag(T58, T21, ll35_in_ag(T58, T21))
U5_ag(T58, T21, ll35_out_ag(T58, T21)) → U6_ag(T58, T21, t1_in_g(T58))
t1_in_g(0) → t1_out_g(0)
U6_ag(T58, T21, t1_out_g(T58)) → p20_out_ag(T58, T21)
U12_g(T8, p20_out_ag(X7, T21)) → t1_out_g(s(T8))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
U8_g(x1, x2)  =  U8_g(x2)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
t1_out_g(x1)  =  t1_out_g
U9_g(x1, x2)  =  U9_g(x2)
U10_g(x1, x2)  =  U10_g(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
U11_g(x1, x2)  =  U11_g(x2)
U12_g(x1, x2)  =  U12_g(x2)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
U4_ag(x1, x2, x3)  =  U4_ag(x3)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
p20_out_ag(x1, x2)  =  p20_out_ag(x1)
U5_ag(x1, x2, x3)  =  U5_ag(x3)
U6_ag(x1, x2, x3)  =  U6_ag(x1, x3)
T1_IN_G(x1)  =  T1_IN_G(x1)
U8_G(x1, x2)  =  U8_G(x2)
LL9_IN_GA(x1, x2)  =  LL9_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x4)
U9_G(x1, x2)  =  U9_G(x2)
U10_G(x1, x2)  =  U10_G(x2)
SELECT19_IN_AAGA(x1, x2, x3, x4)  =  SELECT19_IN_AAGA(x3)
U7_AAGA(x1, x2, x3, x4, x5)  =  U7_AAGA(x5)
SELECT24_IN_AGA(x1, x2, x3)  =  SELECT24_IN_AGA(x2)
U2_AGA(x1, x2, x3, x4, x5)  =  U2_AGA(x5)
U11_G(x1, x2)  =  U11_G(x2)
U12_G(x1, x2)  =  U12_G(x2)
P20_IN_AG(x1, x2)  =  P20_IN_AG(x2)
U4_AG(x1, x2, x3)  =  U4_AG(x3)
LL35_IN_AG(x1, x2)  =  LL35_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x4)
U5_AG(x1, x2, x3)  =  U5_AG(x3)
U6_AG(x1, x2, x3)  =  U6_AG(x1, x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U8_G(T8, ll9_in_ga(T8, X32))
T1_IN_G(s(T8)) → LL9_IN_GA(T8, X32)
LL9_IN_GA(s(T16), .(X69, X70)) → U1_GA(T16, X69, X70, ll9_in_ga(T16, X70))
LL9_IN_GA(s(T16), .(X69, X70)) → LL9_IN_GA(T16, X70)
T1_IN_G(s(T8)) → U9_G(T8, ll9_in_ga(T8, T10))
U9_G(T8, ll9_out_ga(T8, T10)) → U10_G(T8, select19_in_aaga(X5, X31, T10, X6))
U9_G(T8, ll9_out_ga(T8, T10)) → SELECT19_IN_AAGA(X5, X31, T10, X6)
SELECT19_IN_AAGA(X137, X138, T34, .(X138, X139)) → U7_AAGA(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
SELECT19_IN_AAGA(X137, X138, T34, .(X138, X139)) → SELECT24_IN_AGA(X137, T34, X139)
SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → U2_AGA(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → SELECT24_IN_AGA(X174, T47, X175)
U9_G(T8, ll9_out_ga(T8, T10)) → U11_G(T8, select19_in_aaga(T19, T20, T10, T21))
U11_G(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_G(T8, p20_in_ag(X7, T21))
U11_G(T8, select19_out_aaga(T19, T20, T10, T21)) → P20_IN_AG(X7, T21)
P20_IN_AG(X7, T21) → U4_AG(X7, T21, ll35_in_ag(X7, T21))
P20_IN_AG(X7, T21) → LL35_IN_AG(X7, T21)
LL35_IN_AG(s(X233), .(T69, T71)) → U3_AG(X233, T69, T71, ll35_in_ag(X233, T71))
LL35_IN_AG(s(X233), .(T69, T71)) → LL35_IN_AG(X233, T71)
P20_IN_AG(T58, T21) → U5_AG(T58, T21, ll35_in_ag(T58, T21))
U5_AG(T58, T21, ll35_out_ag(T58, T21)) → U6_AG(T58, T21, t1_in_g(T58))
U5_AG(T58, T21, ll35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

t1_in_g(s(T8)) → U8_g(T8, ll9_in_ga(T8, X32))
ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U8_g(T8, ll9_out_ga(T8, X32)) → t1_out_g(s(T8))
t1_in_g(s(T8)) → U9_g(T8, ll9_in_ga(T8, T10))
U9_g(T8, ll9_out_ga(T8, T10)) → U10_g(T8, select19_in_aaga(X5, X31, T10, X6))
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
U10_g(T8, select19_out_aaga(X5, X31, T10, X6)) → t1_out_g(s(T8))
U9_g(T8, ll9_out_ga(T8, T10)) → U11_g(T8, select19_in_aaga(T19, T20, T10, T21))
U11_g(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_g(T8, p20_in_ag(X7, T21))
p20_in_ag(X7, T21) → U4_ag(X7, T21, ll35_in_ag(X7, T21))
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
U4_ag(X7, T21, ll35_out_ag(X7, T21)) → p20_out_ag(X7, T21)
p20_in_ag(T58, T21) → U5_ag(T58, T21, ll35_in_ag(T58, T21))
U5_ag(T58, T21, ll35_out_ag(T58, T21)) → U6_ag(T58, T21, t1_in_g(T58))
t1_in_g(0) → t1_out_g(0)
U6_ag(T58, T21, t1_out_g(T58)) → p20_out_ag(T58, T21)
U12_g(T8, p20_out_ag(X7, T21)) → t1_out_g(s(T8))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
U8_g(x1, x2)  =  U8_g(x2)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
t1_out_g(x1)  =  t1_out_g
U9_g(x1, x2)  =  U9_g(x2)
U10_g(x1, x2)  =  U10_g(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
U11_g(x1, x2)  =  U11_g(x2)
U12_g(x1, x2)  =  U12_g(x2)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
U4_ag(x1, x2, x3)  =  U4_ag(x3)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
p20_out_ag(x1, x2)  =  p20_out_ag(x1)
U5_ag(x1, x2, x3)  =  U5_ag(x3)
U6_ag(x1, x2, x3)  =  U6_ag(x1, x3)
T1_IN_G(x1)  =  T1_IN_G(x1)
U8_G(x1, x2)  =  U8_G(x2)
LL9_IN_GA(x1, x2)  =  LL9_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x4)
U9_G(x1, x2)  =  U9_G(x2)
U10_G(x1, x2)  =  U10_G(x2)
SELECT19_IN_AAGA(x1, x2, x3, x4)  =  SELECT19_IN_AAGA(x3)
U7_AAGA(x1, x2, x3, x4, x5)  =  U7_AAGA(x5)
SELECT24_IN_AGA(x1, x2, x3)  =  SELECT24_IN_AGA(x2)
U2_AGA(x1, x2, x3, x4, x5)  =  U2_AGA(x5)
U11_G(x1, x2)  =  U11_G(x2)
U12_G(x1, x2)  =  U12_G(x2)
P20_IN_AG(x1, x2)  =  P20_IN_AG(x2)
U4_AG(x1, x2, x3)  =  U4_AG(x3)
LL35_IN_AG(x1, x2)  =  LL35_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x4)
U5_AG(x1, x2, x3)  =  U5_AG(x3)
U6_AG(x1, x2, x3)  =  U6_AG(x1, x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 13 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LL35_IN_AG(s(X233), .(T69, T71)) → LL35_IN_AG(X233, T71)

The TRS R consists of the following rules:

t1_in_g(s(T8)) → U8_g(T8, ll9_in_ga(T8, X32))
ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U8_g(T8, ll9_out_ga(T8, X32)) → t1_out_g(s(T8))
t1_in_g(s(T8)) → U9_g(T8, ll9_in_ga(T8, T10))
U9_g(T8, ll9_out_ga(T8, T10)) → U10_g(T8, select19_in_aaga(X5, X31, T10, X6))
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
U10_g(T8, select19_out_aaga(X5, X31, T10, X6)) → t1_out_g(s(T8))
U9_g(T8, ll9_out_ga(T8, T10)) → U11_g(T8, select19_in_aaga(T19, T20, T10, T21))
U11_g(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_g(T8, p20_in_ag(X7, T21))
p20_in_ag(X7, T21) → U4_ag(X7, T21, ll35_in_ag(X7, T21))
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
U4_ag(X7, T21, ll35_out_ag(X7, T21)) → p20_out_ag(X7, T21)
p20_in_ag(T58, T21) → U5_ag(T58, T21, ll35_in_ag(T58, T21))
U5_ag(T58, T21, ll35_out_ag(T58, T21)) → U6_ag(T58, T21, t1_in_g(T58))
t1_in_g(0) → t1_out_g(0)
U6_ag(T58, T21, t1_out_g(T58)) → p20_out_ag(T58, T21)
U12_g(T8, p20_out_ag(X7, T21)) → t1_out_g(s(T8))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
U8_g(x1, x2)  =  U8_g(x2)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
t1_out_g(x1)  =  t1_out_g
U9_g(x1, x2)  =  U9_g(x2)
U10_g(x1, x2)  =  U10_g(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
U11_g(x1, x2)  =  U11_g(x2)
U12_g(x1, x2)  =  U12_g(x2)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
U4_ag(x1, x2, x3)  =  U4_ag(x3)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
p20_out_ag(x1, x2)  =  p20_out_ag(x1)
U5_ag(x1, x2, x3)  =  U5_ag(x3)
U6_ag(x1, x2, x3)  =  U6_ag(x1, x3)
LL35_IN_AG(x1, x2)  =  LL35_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LL35_IN_AG(s(X233), .(T69, T71)) → LL35_IN_AG(X233, T71)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
LL35_IN_AG(x1, x2)  =  LL35_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LL35_IN_AG(.(T71)) → LL35_IN_AG(T71)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LL35_IN_AG(.(T71)) → LL35_IN_AG(T71)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → SELECT24_IN_AGA(X174, T47, X175)

The TRS R consists of the following rules:

t1_in_g(s(T8)) → U8_g(T8, ll9_in_ga(T8, X32))
ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U8_g(T8, ll9_out_ga(T8, X32)) → t1_out_g(s(T8))
t1_in_g(s(T8)) → U9_g(T8, ll9_in_ga(T8, T10))
U9_g(T8, ll9_out_ga(T8, T10)) → U10_g(T8, select19_in_aaga(X5, X31, T10, X6))
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
U10_g(T8, select19_out_aaga(X5, X31, T10, X6)) → t1_out_g(s(T8))
U9_g(T8, ll9_out_ga(T8, T10)) → U11_g(T8, select19_in_aaga(T19, T20, T10, T21))
U11_g(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_g(T8, p20_in_ag(X7, T21))
p20_in_ag(X7, T21) → U4_ag(X7, T21, ll35_in_ag(X7, T21))
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
U4_ag(X7, T21, ll35_out_ag(X7, T21)) → p20_out_ag(X7, T21)
p20_in_ag(T58, T21) → U5_ag(T58, T21, ll35_in_ag(T58, T21))
U5_ag(T58, T21, ll35_out_ag(T58, T21)) → U6_ag(T58, T21, t1_in_g(T58))
t1_in_g(0) → t1_out_g(0)
U6_ag(T58, T21, t1_out_g(T58)) → p20_out_ag(T58, T21)
U12_g(T8, p20_out_ag(X7, T21)) → t1_out_g(s(T8))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
U8_g(x1, x2)  =  U8_g(x2)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
t1_out_g(x1)  =  t1_out_g
U9_g(x1, x2)  =  U9_g(x2)
U10_g(x1, x2)  =  U10_g(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
U11_g(x1, x2)  =  U11_g(x2)
U12_g(x1, x2)  =  U12_g(x2)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
U4_ag(x1, x2, x3)  =  U4_ag(x3)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
p20_out_ag(x1, x2)  =  p20_out_ag(x1)
U5_ag(x1, x2, x3)  =  U5_ag(x3)
U6_ag(x1, x2, x3)  =  U6_ag(x1, x3)
SELECT24_IN_AGA(x1, x2, x3)  =  SELECT24_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → SELECT24_IN_AGA(X174, T47, X175)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
SELECT24_IN_AGA(x1, x2, x3)  =  SELECT24_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SELECT24_IN_AGA(.(T47)) → SELECT24_IN_AGA(T47)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SELECT24_IN_AGA(.(T47)) → SELECT24_IN_AGA(T47)
    The graph contains the following edges 1 > 1

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LL9_IN_GA(s(T16), .(X69, X70)) → LL9_IN_GA(T16, X70)

The TRS R consists of the following rules:

t1_in_g(s(T8)) → U8_g(T8, ll9_in_ga(T8, X32))
ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U8_g(T8, ll9_out_ga(T8, X32)) → t1_out_g(s(T8))
t1_in_g(s(T8)) → U9_g(T8, ll9_in_ga(T8, T10))
U9_g(T8, ll9_out_ga(T8, T10)) → U10_g(T8, select19_in_aaga(X5, X31, T10, X6))
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
U10_g(T8, select19_out_aaga(X5, X31, T10, X6)) → t1_out_g(s(T8))
U9_g(T8, ll9_out_ga(T8, T10)) → U11_g(T8, select19_in_aaga(T19, T20, T10, T21))
U11_g(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_g(T8, p20_in_ag(X7, T21))
p20_in_ag(X7, T21) → U4_ag(X7, T21, ll35_in_ag(X7, T21))
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
U4_ag(X7, T21, ll35_out_ag(X7, T21)) → p20_out_ag(X7, T21)
p20_in_ag(T58, T21) → U5_ag(T58, T21, ll35_in_ag(T58, T21))
U5_ag(T58, T21, ll35_out_ag(T58, T21)) → U6_ag(T58, T21, t1_in_g(T58))
t1_in_g(0) → t1_out_g(0)
U6_ag(T58, T21, t1_out_g(T58)) → p20_out_ag(T58, T21)
U12_g(T8, p20_out_ag(X7, T21)) → t1_out_g(s(T8))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
U8_g(x1, x2)  =  U8_g(x2)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
t1_out_g(x1)  =  t1_out_g
U9_g(x1, x2)  =  U9_g(x2)
U10_g(x1, x2)  =  U10_g(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
U11_g(x1, x2)  =  U11_g(x2)
U12_g(x1, x2)  =  U12_g(x2)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
U4_ag(x1, x2, x3)  =  U4_ag(x3)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
p20_out_ag(x1, x2)  =  p20_out_ag(x1)
U5_ag(x1, x2, x3)  =  U5_ag(x3)
U6_ag(x1, x2, x3)  =  U6_ag(x1, x3)
LL9_IN_GA(x1, x2)  =  LL9_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LL9_IN_GA(s(T16), .(X69, X70)) → LL9_IN_GA(T16, X70)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
LL9_IN_GA(x1, x2)  =  LL9_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LL9_IN_GA(s(T16)) → LL9_IN_GA(T16)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LL9_IN_GA(s(T16)) → LL9_IN_GA(T16)
    The graph contains the following edges 1 > 1

(29) YES

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U9_G(T8, ll9_in_ga(T8, T10))
U9_G(T8, ll9_out_ga(T8, T10)) → U11_G(T8, select19_in_aaga(T19, T20, T10, T21))
U11_G(T8, select19_out_aaga(T19, T20, T10, T21)) → P20_IN_AG(X7, T21)
P20_IN_AG(T58, T21) → U5_AG(T58, T21, ll35_in_ag(T58, T21))
U5_AG(T58, T21, ll35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

t1_in_g(s(T8)) → U8_g(T8, ll9_in_ga(T8, X32))
ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U8_g(T8, ll9_out_ga(T8, X32)) → t1_out_g(s(T8))
t1_in_g(s(T8)) → U9_g(T8, ll9_in_ga(T8, T10))
U9_g(T8, ll9_out_ga(T8, T10)) → U10_g(T8, select19_in_aaga(X5, X31, T10, X6))
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
U10_g(T8, select19_out_aaga(X5, X31, T10, X6)) → t1_out_g(s(T8))
U9_g(T8, ll9_out_ga(T8, T10)) → U11_g(T8, select19_in_aaga(T19, T20, T10, T21))
U11_g(T8, select19_out_aaga(T19, T20, T10, T21)) → U12_g(T8, p20_in_ag(X7, T21))
p20_in_ag(X7, T21) → U4_ag(X7, T21, ll35_in_ag(X7, T21))
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
U4_ag(X7, T21, ll35_out_ag(X7, T21)) → p20_out_ag(X7, T21)
p20_in_ag(T58, T21) → U5_ag(T58, T21, ll35_in_ag(T58, T21))
U5_ag(T58, T21, ll35_out_ag(T58, T21)) → U6_ag(T58, T21, t1_in_g(T58))
t1_in_g(0) → t1_out_g(0)
U6_ag(T58, T21, t1_out_g(T58)) → p20_out_ag(T58, T21)
U12_g(T8, p20_out_ag(X7, T21)) → t1_out_g(s(T8))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
U8_g(x1, x2)  =  U8_g(x2)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
t1_out_g(x1)  =  t1_out_g
U9_g(x1, x2)  =  U9_g(x2)
U10_g(x1, x2)  =  U10_g(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
U11_g(x1, x2)  =  U11_g(x2)
U12_g(x1, x2)  =  U12_g(x2)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
U4_ag(x1, x2, x3)  =  U4_ag(x3)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
p20_out_ag(x1, x2)  =  p20_out_ag(x1)
U5_ag(x1, x2, x3)  =  U5_ag(x3)
U6_ag(x1, x2, x3)  =  U6_ag(x1, x3)
T1_IN_G(x1)  =  T1_IN_G(x1)
U9_G(x1, x2)  =  U9_G(x2)
U11_G(x1, x2)  =  U11_G(x2)
P20_IN_AG(x1, x2)  =  P20_IN_AG(x2)
U5_AG(x1, x2, x3)  =  U5_AG(x3)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U9_G(T8, ll9_in_ga(T8, T10))
U9_G(T8, ll9_out_ga(T8, T10)) → U11_G(T8, select19_in_aaga(T19, T20, T10, T21))
U11_G(T8, select19_out_aaga(T19, T20, T10, T21)) → P20_IN_AG(X7, T21)
P20_IN_AG(T58, T21) → U5_AG(T58, T21, ll35_in_ag(T58, T21))
U5_AG(T58, T21, ll35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

ll9_in_ga(s(T16), .(X69, X70)) → U1_ga(T16, X69, X70, ll9_in_ga(T16, X70))
ll9_in_ga(0, []) → ll9_out_ga(0, [])
select19_in_aaga(X137, X138, T34, .(X138, X139)) → U7_aaga(X137, X138, T34, X139, select24_in_aga(X137, T34, X139))
select19_in_aaga(X205, X205, T55, T55) → select19_out_aaga(X205, X205, T55, T55)
ll35_in_ag(s(X233), .(T69, T71)) → U3_ag(X233, T69, T71, ll35_in_ag(X233, T71))
ll35_in_ag(0, []) → ll35_out_ag(0, [])
U1_ga(T16, X69, X70, ll9_out_ga(T16, X70)) → ll9_out_ga(s(T16), .(X69, X70))
U7_aaga(X137, X138, T34, X139, select24_out_aga(X137, T34, X139)) → select19_out_aaga(X137, X138, T34, .(X138, X139))
U3_ag(X233, T69, T71, ll35_out_ag(X233, T71)) → ll35_out_ag(s(X233), .(T69, T71))
select24_in_aga(X174, .(T45, T47), .(T45, X175)) → U2_aga(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
select24_in_aga(X194, .(X194, T52), T52) → select24_out_aga(X194, .(X194, T52), T52)
U2_aga(X174, T45, T47, X175, select24_out_aga(X174, T47, X175)) → select24_out_aga(X174, .(T45, T47), .(T45, X175))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
0  =  0
ll9_out_ga(x1, x2)  =  ll9_out_ga(x2)
.(x1, x2)  =  .(x2)
select19_in_aaga(x1, x2, x3, x4)  =  select19_in_aaga(x3)
U7_aaga(x1, x2, x3, x4, x5)  =  U7_aaga(x5)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x5)
select24_out_aga(x1, x2, x3)  =  select24_out_aga(x3)
select19_out_aaga(x1, x2, x3, x4)  =  select19_out_aaga(x4)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
[]  =  []
ll35_out_ag(x1, x2)  =  ll35_out_ag(x1)
T1_IN_G(x1)  =  T1_IN_G(x1)
U9_G(x1, x2)  =  U9_G(x2)
U11_G(x1, x2)  =  U11_G(x2)
P20_IN_AG(x1, x2)  =  P20_IN_AG(x2)
U5_AG(x1, x2, x3)  =  U5_AG(x3)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U9_G(ll9_in_ga(T8))
U9_G(ll9_out_ga(T10)) → U11_G(select19_in_aaga(T10))
U11_G(select19_out_aaga(T21)) → P20_IN_AG(T21)
P20_IN_AG(T21) → U5_AG(ll35_in_ag(T21))
U5_AG(ll35_out_ag(T58)) → T1_IN_G(T58)

The TRS R consists of the following rules:

ll9_in_ga(s(T16)) → U1_ga(ll9_in_ga(T16))
ll9_in_ga(0) → ll9_out_ga([])
select19_in_aaga(T34) → U7_aaga(select24_in_aga(T34))
select19_in_aaga(T55) → select19_out_aaga(T55)
ll35_in_ag(.(T71)) → U3_ag(ll35_in_ag(T71))
ll35_in_ag([]) → ll35_out_ag(0)
U1_ga(ll9_out_ga(X70)) → ll9_out_ga(.(X70))
U7_aaga(select24_out_aga(X139)) → select19_out_aaga(.(X139))
U3_ag(ll35_out_ag(X233)) → ll35_out_ag(s(X233))
select24_in_aga(.(T47)) → U2_aga(select24_in_aga(T47))
select24_in_aga(.(T52)) → select24_out_aga(T52)
U2_aga(select24_out_aga(X175)) → select24_out_aga(.(X175))

The set Q consists of the following terms:

ll9_in_ga(x0)
select19_in_aaga(x0)
ll35_in_ag(x0)
U1_ga(x0)
U7_aaga(x0)
U3_ag(x0)
select24_in_aga(x0)
U2_aga(x0)

We have to consider all (P,Q,R)-chains.

(35) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

T1_IN_G(s(T8)) → U9_G(ll9_in_ga(T8))
U9_G(ll9_out_ga(T10)) → U11_G(select19_in_aaga(T10))
U11_G(select19_out_aaga(T21)) → P20_IN_AG(T21)
P20_IN_AG(T21) → U5_AG(ll35_in_ag(T21))
U5_AG(ll35_out_ag(T58)) → T1_IN_G(T58)

Strictly oriented rules of the TRS R:

ll9_in_ga(0) → ll9_out_ga([])
select19_in_aaga(T34) → U7_aaga(select24_in_aga(T34))
select19_in_aaga(T55) → select19_out_aaga(T55)
ll35_in_ag([]) → ll35_out_ag(0)
U7_aaga(select24_out_aga(X139)) → select19_out_aaga(.(X139))
select24_in_aga(.(T52)) → select24_out_aga(T52)

Used ordering: Polynomial interpretation [POLO]:

POL(.(x1)) = 10 + x1   
POL(0) = 0   
POL(P20_IN_AG(x1)) = 3 + x1   
POL(T1_IN_G(x1)) = x1   
POL(U11_G(x1)) = 4 + x1   
POL(U1_ga(x1)) = 10 + x1   
POL(U2_aga(x1)) = 10 + x1   
POL(U3_ag(x1)) = 10 + x1   
POL(U5_AG(x1)) = x1   
POL(U7_aaga(x1)) = 2 + x1   
POL(U9_G(x1)) = x1   
POL([]) = 0   
POL(ll35_in_ag(x1)) = 2 + x1   
POL(ll35_out_ag(x1)) = 1 + x1   
POL(ll9_in_ga(x1)) = 9 + x1   
POL(ll9_out_ga(x1)) = 8 + x1   
POL(s(x1)) = 10 + x1   
POL(select19_in_aaga(x1)) = 3 + x1   
POL(select19_out_aaga(x1)) = x1   
POL(select24_in_aga(x1)) = x1   
POL(select24_out_aga(x1)) = 9 + x1   

(36) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

ll9_in_ga(s(T16)) → U1_ga(ll9_in_ga(T16))
ll35_in_ag(.(T71)) → U3_ag(ll35_in_ag(T71))
U1_ga(ll9_out_ga(X70)) → ll9_out_ga(.(X70))
U3_ag(ll35_out_ag(X233)) → ll35_out_ag(s(X233))
select24_in_aga(.(T47)) → U2_aga(select24_in_aga(T47))
U2_aga(select24_out_aga(X175)) → select24_out_aga(.(X175))

The set Q consists of the following terms:

ll9_in_ga(x0)
select19_in_aaga(x0)
ll35_in_ag(x0)
U1_ga(x0)
U7_aaga(x0)
U3_ag(x0)
select24_in_aga(x0)
U2_aga(x0)

We have to consider all (P,Q,R)-chains.

(37) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(38) YES