(0) Obligation:

Clauses:

t(N) :- ','(ll(N, Xs), ','(select(X1, Xs, Xs1), ','(ll(M, Xs1), t(M)))).
t(0).
ll(s(N), .(X, Xs)) :- ll(N, Xs).
ll(0, []).
select(X, .(Y, Xs), .(Y, Ys)) :- select(X, Xs, Ys).
select(X, .(X, Xs), Xs).

Queries:

t(g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

ll9(s(T16), .(X69, X70)) :- ll9(T16, X70).
select24(X174, .(T45, T47), .(T45, X175)) :- select24(X174, T47, X175).
ll35(s(X233), .(T69, T71)) :- ll35(X233, T71).
p20(X7, T21) :- ll35(X7, T21).
p20(T58, T21) :- ','(llc35(T58, T21), t1(T58)).
t1(s(T8)) :- ll9(T8, X32).
t1(s(T8)) :- ','(llc9(T8, T34), select24(X137, T34, X139)).
t1(s(T8)) :- ','(llc9(T8, T10), ','(selectc19(T19, T20, T10, T21), p20(X7, T21))).
t1(0) :- ','(selectc49(T75, T76), p20(X7, T76)).

Clauses:

llc9(s(T16), .(X69, X70)) :- llc9(T16, X70).
llc9(0, []).
selectc24(X174, .(T45, T47), .(T45, X175)) :- selectc24(X174, T47, X175).
selectc24(X194, .(X194, T52), T52).
tc1(s(T8)) :- ','(llc9(T8, T10), ','(selectc19(T19, T20, T10, T21), qc20(X7, T21))).
tc1(0) :- ','(selectc49(T75, T76), qc20(X7, T76)).
tc1(0).
llc35(s(X233), .(T69, T71)) :- llc35(X233, T71).
llc35(0, []).
qc20(T58, T21) :- ','(llc35(T58, T21), tc1(T58)).
selectc19(X137, X138, T34, .(X138, X139)) :- selectc24(X137, T34, X139).
selectc19(X205, X205, T55, T55).

Afs:

t1(x1)  =  t1(x1)

(3) UndefinedPredicateInTriplesTransformerProof (SOUND transformation)

Deleted triples and predicates having undefined goals [UNKNOWN].

(4) Obligation:

Triples:

ll9(s(T16), .(X69, X70)) :- ll9(T16, X70).
select24(X174, .(T45, T47), .(T45, X175)) :- select24(X174, T47, X175).
ll35(s(X233), .(T69, T71)) :- ll35(X233, T71).
p20(X7, T21) :- ll35(X7, T21).
p20(T58, T21) :- ','(llc35(T58, T21), t1(T58)).
t1(s(T8)) :- ll9(T8, X32).
t1(s(T8)) :- ','(llc9(T8, T34), select24(X137, T34, X139)).
t1(s(T8)) :- ','(llc9(T8, T10), ','(selectc19(T19, T20, T10, T21), p20(X7, T21))).

Clauses:

llc9(s(T16), .(X69, X70)) :- llc9(T16, X70).
llc9(0, []).
selectc24(X174, .(T45, T47), .(T45, X175)) :- selectc24(X174, T47, X175).
selectc24(X194, .(X194, T52), T52).
tc1(s(T8)) :- ','(llc9(T8, T10), ','(selectc19(T19, T20, T10, T21), qc20(X7, T21))).
tc1(0).
llc35(s(X233), .(T69, T71)) :- llc35(X233, T71).
llc35(0, []).
qc20(T58, T21) :- ','(llc35(T58, T21), tc1(T58)).
selectc19(X137, X138, T34, .(X138, X139)) :- selectc24(X137, T34, X139).
selectc19(X205, X205, T55, T55).

Afs:

t1(x1)  =  t1(x1)

(5) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
t1_in: (b)
ll9_in: (b,f)
llc9_in: (b,f)
select24_in: (f,b,f)
selectc19_in: (f,f,b,f)
selectc24_in: (f,b,f)
p20_in: (f,b)
ll35_in: (f,b)
llc35_in: (f,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U7_G(T8, ll9_in_ga(T8, X32))
T1_IN_G(s(T8)) → LL9_IN_GA(T8, X32)
LL9_IN_GA(s(T16), .(X69, X70)) → U1_GA(T16, X69, X70, ll9_in_ga(T16, X70))
LL9_IN_GA(s(T16), .(X69, X70)) → LL9_IN_GA(T16, X70)
T1_IN_G(s(T8)) → U8_G(T8, llc9_in_ga(T8, T34))
U8_G(T8, llc9_out_ga(T8, T34)) → U9_G(T8, select24_in_aga(X137, T34, X139))
U8_G(T8, llc9_out_ga(T8, T34)) → SELECT24_IN_AGA(X137, T34, X139)
SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → U2_AGA(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → SELECT24_IN_AGA(X174, T47, X175)
T1_IN_G(s(T8)) → U10_G(T8, llc9_in_ga(T8, T10))
U10_G(T8, llc9_out_ga(T8, T10)) → U11_G(T8, selectc19_in_aaga(T19, T20, T10, T21))
U11_G(T8, selectc19_out_aaga(T19, T20, T10, T21)) → U12_G(T8, p20_in_ag(X7, T21))
U11_G(T8, selectc19_out_aaga(T19, T20, T10, T21)) → P20_IN_AG(X7, T21)
P20_IN_AG(X7, T21) → U4_AG(X7, T21, ll35_in_ag(X7, T21))
P20_IN_AG(X7, T21) → LL35_IN_AG(X7, T21)
LL35_IN_AG(s(X233), .(T69, T71)) → U3_AG(X233, T69, T71, ll35_in_ag(X233, T71))
LL35_IN_AG(s(X233), .(T69, T71)) → LL35_IN_AG(X233, T71)
P20_IN_AG(T58, T21) → U5_AG(T58, T21, llc35_in_ag(T58, T21))
U5_AG(T58, T21, llc35_out_ag(T58, T21)) → U6_AG(T58, T21, t1_in_g(T58))
U5_AG(T58, T21, llc35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

llc9_in_ga(s(T16), .(X69, X70)) → U14_ga(T16, X69, X70, llc9_in_ga(T16, X70))
llc9_in_ga(0, []) → llc9_out_ga(0, [])
U14_ga(T16, X69, X70, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X69, X70))
selectc19_in_aaga(X137, X138, T34, .(X138, X139)) → U22_aaga(X137, X138, T34, X139, selectc24_in_aga(X137, T34, X139))
selectc24_in_aga(X174, .(T45, T47), .(T45, X175)) → U15_aga(X174, T45, T47, X175, selectc24_in_aga(X174, T47, X175))
selectc24_in_aga(X194, .(X194, T52), T52) → selectc24_out_aga(X194, .(X194, T52), T52)
U15_aga(X174, T45, T47, X175, selectc24_out_aga(X174, T47, X175)) → selectc24_out_aga(X174, .(T45, T47), .(T45, X175))
U22_aaga(X137, X138, T34, X139, selectc24_out_aga(X137, T34, X139)) → selectc19_out_aaga(X137, X138, T34, .(X138, X139))
selectc19_in_aaga(X205, X205, T55, T55) → selectc19_out_aaga(X205, X205, T55, T55)
llc35_in_ag(s(X233), .(T69, T71)) → U19_ag(X233, T69, T71, llc35_in_ag(X233, T71))
llc35_in_ag(0, []) → llc35_out_ag(0, [])
U19_ag(X233, T69, T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T69, T71))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
.(x1, x2)  =  .(x2)
llc9_in_ga(x1, x2)  =  llc9_in_ga(x1)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
0  =  0
llc9_out_ga(x1, x2)  =  llc9_out_ga(x1, x2)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
selectc19_in_aaga(x1, x2, x3, x4)  =  selectc19_in_aaga(x3)
U22_aaga(x1, x2, x3, x4, x5)  =  U22_aaga(x3, x5)
selectc24_in_aga(x1, x2, x3)  =  selectc24_in_aga(x2)
U15_aga(x1, x2, x3, x4, x5)  =  U15_aga(x3, x5)
selectc24_out_aga(x1, x2, x3)  =  selectc24_out_aga(x2, x3)
selectc19_out_aaga(x1, x2, x3, x4)  =  selectc19_out_aaga(x3, x4)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
llc35_in_ag(x1, x2)  =  llc35_in_ag(x2)
U19_ag(x1, x2, x3, x4)  =  U19_ag(x3, x4)
[]  =  []
llc35_out_ag(x1, x2)  =  llc35_out_ag(x1, x2)
T1_IN_G(x1)  =  T1_IN_G(x1)
U7_G(x1, x2)  =  U7_G(x1, x2)
LL9_IN_GA(x1, x2)  =  LL9_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U8_G(x1, x2)  =  U8_G(x1, x2)
U9_G(x1, x2)  =  U9_G(x1, x2)
SELECT24_IN_AGA(x1, x2, x3)  =  SELECT24_IN_AGA(x2)
U2_AGA(x1, x2, x3, x4, x5)  =  U2_AGA(x3, x5)
U10_G(x1, x2)  =  U10_G(x1, x2)
U11_G(x1, x2)  =  U11_G(x1, x2)
U12_G(x1, x2)  =  U12_G(x1, x2)
P20_IN_AG(x1, x2)  =  P20_IN_AG(x2)
U4_AG(x1, x2, x3)  =  U4_AG(x2, x3)
LL35_IN_AG(x1, x2)  =  LL35_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x3, x4)
U5_AG(x1, x2, x3)  =  U5_AG(x2, x3)
U6_AG(x1, x2, x3)  =  U6_AG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U7_G(T8, ll9_in_ga(T8, X32))
T1_IN_G(s(T8)) → LL9_IN_GA(T8, X32)
LL9_IN_GA(s(T16), .(X69, X70)) → U1_GA(T16, X69, X70, ll9_in_ga(T16, X70))
LL9_IN_GA(s(T16), .(X69, X70)) → LL9_IN_GA(T16, X70)
T1_IN_G(s(T8)) → U8_G(T8, llc9_in_ga(T8, T34))
U8_G(T8, llc9_out_ga(T8, T34)) → U9_G(T8, select24_in_aga(X137, T34, X139))
U8_G(T8, llc9_out_ga(T8, T34)) → SELECT24_IN_AGA(X137, T34, X139)
SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → U2_AGA(X174, T45, T47, X175, select24_in_aga(X174, T47, X175))
SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → SELECT24_IN_AGA(X174, T47, X175)
T1_IN_G(s(T8)) → U10_G(T8, llc9_in_ga(T8, T10))
U10_G(T8, llc9_out_ga(T8, T10)) → U11_G(T8, selectc19_in_aaga(T19, T20, T10, T21))
U11_G(T8, selectc19_out_aaga(T19, T20, T10, T21)) → U12_G(T8, p20_in_ag(X7, T21))
U11_G(T8, selectc19_out_aaga(T19, T20, T10, T21)) → P20_IN_AG(X7, T21)
P20_IN_AG(X7, T21) → U4_AG(X7, T21, ll35_in_ag(X7, T21))
P20_IN_AG(X7, T21) → LL35_IN_AG(X7, T21)
LL35_IN_AG(s(X233), .(T69, T71)) → U3_AG(X233, T69, T71, ll35_in_ag(X233, T71))
LL35_IN_AG(s(X233), .(T69, T71)) → LL35_IN_AG(X233, T71)
P20_IN_AG(T58, T21) → U5_AG(T58, T21, llc35_in_ag(T58, T21))
U5_AG(T58, T21, llc35_out_ag(T58, T21)) → U6_AG(T58, T21, t1_in_g(T58))
U5_AG(T58, T21, llc35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

llc9_in_ga(s(T16), .(X69, X70)) → U14_ga(T16, X69, X70, llc9_in_ga(T16, X70))
llc9_in_ga(0, []) → llc9_out_ga(0, [])
U14_ga(T16, X69, X70, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X69, X70))
selectc19_in_aaga(X137, X138, T34, .(X138, X139)) → U22_aaga(X137, X138, T34, X139, selectc24_in_aga(X137, T34, X139))
selectc24_in_aga(X174, .(T45, T47), .(T45, X175)) → U15_aga(X174, T45, T47, X175, selectc24_in_aga(X174, T47, X175))
selectc24_in_aga(X194, .(X194, T52), T52) → selectc24_out_aga(X194, .(X194, T52), T52)
U15_aga(X174, T45, T47, X175, selectc24_out_aga(X174, T47, X175)) → selectc24_out_aga(X174, .(T45, T47), .(T45, X175))
U22_aaga(X137, X138, T34, X139, selectc24_out_aga(X137, T34, X139)) → selectc19_out_aaga(X137, X138, T34, .(X138, X139))
selectc19_in_aaga(X205, X205, T55, T55) → selectc19_out_aaga(X205, X205, T55, T55)
llc35_in_ag(s(X233), .(T69, T71)) → U19_ag(X233, T69, T71, llc35_in_ag(X233, T71))
llc35_in_ag(0, []) → llc35_out_ag(0, [])
U19_ag(X233, T69, T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T69, T71))

The argument filtering Pi contains the following mapping:
t1_in_g(x1)  =  t1_in_g(x1)
s(x1)  =  s(x1)
ll9_in_ga(x1, x2)  =  ll9_in_ga(x1)
.(x1, x2)  =  .(x2)
llc9_in_ga(x1, x2)  =  llc9_in_ga(x1)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
0  =  0
llc9_out_ga(x1, x2)  =  llc9_out_ga(x1, x2)
select24_in_aga(x1, x2, x3)  =  select24_in_aga(x2)
selectc19_in_aaga(x1, x2, x3, x4)  =  selectc19_in_aaga(x3)
U22_aaga(x1, x2, x3, x4, x5)  =  U22_aaga(x3, x5)
selectc24_in_aga(x1, x2, x3)  =  selectc24_in_aga(x2)
U15_aga(x1, x2, x3, x4, x5)  =  U15_aga(x3, x5)
selectc24_out_aga(x1, x2, x3)  =  selectc24_out_aga(x2, x3)
selectc19_out_aaga(x1, x2, x3, x4)  =  selectc19_out_aaga(x3, x4)
p20_in_ag(x1, x2)  =  p20_in_ag(x2)
ll35_in_ag(x1, x2)  =  ll35_in_ag(x2)
llc35_in_ag(x1, x2)  =  llc35_in_ag(x2)
U19_ag(x1, x2, x3, x4)  =  U19_ag(x3, x4)
[]  =  []
llc35_out_ag(x1, x2)  =  llc35_out_ag(x1, x2)
T1_IN_G(x1)  =  T1_IN_G(x1)
U7_G(x1, x2)  =  U7_G(x1, x2)
LL9_IN_GA(x1, x2)  =  LL9_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U8_G(x1, x2)  =  U8_G(x1, x2)
U9_G(x1, x2)  =  U9_G(x1, x2)
SELECT24_IN_AGA(x1, x2, x3)  =  SELECT24_IN_AGA(x2)
U2_AGA(x1, x2, x3, x4, x5)  =  U2_AGA(x3, x5)
U10_G(x1, x2)  =  U10_G(x1, x2)
U11_G(x1, x2)  =  U11_G(x1, x2)
U12_G(x1, x2)  =  U12_G(x1, x2)
P20_IN_AG(x1, x2)  =  P20_IN_AG(x2)
U4_AG(x1, x2, x3)  =  U4_AG(x2, x3)
LL35_IN_AG(x1, x2)  =  LL35_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x3, x4)
U5_AG(x1, x2, x3)  =  U5_AG(x2, x3)
U6_AG(x1, x2, x3)  =  U6_AG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 12 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LL35_IN_AG(s(X233), .(T69, T71)) → LL35_IN_AG(X233, T71)

The TRS R consists of the following rules:

llc9_in_ga(s(T16), .(X69, X70)) → U14_ga(T16, X69, X70, llc9_in_ga(T16, X70))
llc9_in_ga(0, []) → llc9_out_ga(0, [])
U14_ga(T16, X69, X70, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X69, X70))
selectc19_in_aaga(X137, X138, T34, .(X138, X139)) → U22_aaga(X137, X138, T34, X139, selectc24_in_aga(X137, T34, X139))
selectc24_in_aga(X174, .(T45, T47), .(T45, X175)) → U15_aga(X174, T45, T47, X175, selectc24_in_aga(X174, T47, X175))
selectc24_in_aga(X194, .(X194, T52), T52) → selectc24_out_aga(X194, .(X194, T52), T52)
U15_aga(X174, T45, T47, X175, selectc24_out_aga(X174, T47, X175)) → selectc24_out_aga(X174, .(T45, T47), .(T45, X175))
U22_aaga(X137, X138, T34, X139, selectc24_out_aga(X137, T34, X139)) → selectc19_out_aaga(X137, X138, T34, .(X138, X139))
selectc19_in_aaga(X205, X205, T55, T55) → selectc19_out_aaga(X205, X205, T55, T55)
llc35_in_ag(s(X233), .(T69, T71)) → U19_ag(X233, T69, T71, llc35_in_ag(X233, T71))
llc35_in_ag(0, []) → llc35_out_ag(0, [])
U19_ag(X233, T69, T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T69, T71))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
llc9_in_ga(x1, x2)  =  llc9_in_ga(x1)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
0  =  0
llc9_out_ga(x1, x2)  =  llc9_out_ga(x1, x2)
selectc19_in_aaga(x1, x2, x3, x4)  =  selectc19_in_aaga(x3)
U22_aaga(x1, x2, x3, x4, x5)  =  U22_aaga(x3, x5)
selectc24_in_aga(x1, x2, x3)  =  selectc24_in_aga(x2)
U15_aga(x1, x2, x3, x4, x5)  =  U15_aga(x3, x5)
selectc24_out_aga(x1, x2, x3)  =  selectc24_out_aga(x2, x3)
selectc19_out_aaga(x1, x2, x3, x4)  =  selectc19_out_aaga(x3, x4)
llc35_in_ag(x1, x2)  =  llc35_in_ag(x2)
U19_ag(x1, x2, x3, x4)  =  U19_ag(x3, x4)
[]  =  []
llc35_out_ag(x1, x2)  =  llc35_out_ag(x1, x2)
LL35_IN_AG(x1, x2)  =  LL35_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LL35_IN_AG(s(X233), .(T69, T71)) → LL35_IN_AG(X233, T71)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
LL35_IN_AG(x1, x2)  =  LL35_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LL35_IN_AG(.(T71)) → LL35_IN_AG(T71)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LL35_IN_AG(.(T71)) → LL35_IN_AG(T71)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → SELECT24_IN_AGA(X174, T47, X175)

The TRS R consists of the following rules:

llc9_in_ga(s(T16), .(X69, X70)) → U14_ga(T16, X69, X70, llc9_in_ga(T16, X70))
llc9_in_ga(0, []) → llc9_out_ga(0, [])
U14_ga(T16, X69, X70, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X69, X70))
selectc19_in_aaga(X137, X138, T34, .(X138, X139)) → U22_aaga(X137, X138, T34, X139, selectc24_in_aga(X137, T34, X139))
selectc24_in_aga(X174, .(T45, T47), .(T45, X175)) → U15_aga(X174, T45, T47, X175, selectc24_in_aga(X174, T47, X175))
selectc24_in_aga(X194, .(X194, T52), T52) → selectc24_out_aga(X194, .(X194, T52), T52)
U15_aga(X174, T45, T47, X175, selectc24_out_aga(X174, T47, X175)) → selectc24_out_aga(X174, .(T45, T47), .(T45, X175))
U22_aaga(X137, X138, T34, X139, selectc24_out_aga(X137, T34, X139)) → selectc19_out_aaga(X137, X138, T34, .(X138, X139))
selectc19_in_aaga(X205, X205, T55, T55) → selectc19_out_aaga(X205, X205, T55, T55)
llc35_in_ag(s(X233), .(T69, T71)) → U19_ag(X233, T69, T71, llc35_in_ag(X233, T71))
llc35_in_ag(0, []) → llc35_out_ag(0, [])
U19_ag(X233, T69, T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T69, T71))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
llc9_in_ga(x1, x2)  =  llc9_in_ga(x1)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
0  =  0
llc9_out_ga(x1, x2)  =  llc9_out_ga(x1, x2)
selectc19_in_aaga(x1, x2, x3, x4)  =  selectc19_in_aaga(x3)
U22_aaga(x1, x2, x3, x4, x5)  =  U22_aaga(x3, x5)
selectc24_in_aga(x1, x2, x3)  =  selectc24_in_aga(x2)
U15_aga(x1, x2, x3, x4, x5)  =  U15_aga(x3, x5)
selectc24_out_aga(x1, x2, x3)  =  selectc24_out_aga(x2, x3)
selectc19_out_aaga(x1, x2, x3, x4)  =  selectc19_out_aaga(x3, x4)
llc35_in_ag(x1, x2)  =  llc35_in_ag(x2)
U19_ag(x1, x2, x3, x4)  =  U19_ag(x3, x4)
[]  =  []
llc35_out_ag(x1, x2)  =  llc35_out_ag(x1, x2)
SELECT24_IN_AGA(x1, x2, x3)  =  SELECT24_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SELECT24_IN_AGA(X174, .(T45, T47), .(T45, X175)) → SELECT24_IN_AGA(X174, T47, X175)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
SELECT24_IN_AGA(x1, x2, x3)  =  SELECT24_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SELECT24_IN_AGA(.(T47)) → SELECT24_IN_AGA(T47)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • SELECT24_IN_AGA(.(T47)) → SELECT24_IN_AGA(T47)
    The graph contains the following edges 1 > 1

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LL9_IN_GA(s(T16), .(X69, X70)) → LL9_IN_GA(T16, X70)

The TRS R consists of the following rules:

llc9_in_ga(s(T16), .(X69, X70)) → U14_ga(T16, X69, X70, llc9_in_ga(T16, X70))
llc9_in_ga(0, []) → llc9_out_ga(0, [])
U14_ga(T16, X69, X70, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X69, X70))
selectc19_in_aaga(X137, X138, T34, .(X138, X139)) → U22_aaga(X137, X138, T34, X139, selectc24_in_aga(X137, T34, X139))
selectc24_in_aga(X174, .(T45, T47), .(T45, X175)) → U15_aga(X174, T45, T47, X175, selectc24_in_aga(X174, T47, X175))
selectc24_in_aga(X194, .(X194, T52), T52) → selectc24_out_aga(X194, .(X194, T52), T52)
U15_aga(X174, T45, T47, X175, selectc24_out_aga(X174, T47, X175)) → selectc24_out_aga(X174, .(T45, T47), .(T45, X175))
U22_aaga(X137, X138, T34, X139, selectc24_out_aga(X137, T34, X139)) → selectc19_out_aaga(X137, X138, T34, .(X138, X139))
selectc19_in_aaga(X205, X205, T55, T55) → selectc19_out_aaga(X205, X205, T55, T55)
llc35_in_ag(s(X233), .(T69, T71)) → U19_ag(X233, T69, T71, llc35_in_ag(X233, T71))
llc35_in_ag(0, []) → llc35_out_ag(0, [])
U19_ag(X233, T69, T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T69, T71))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
llc9_in_ga(x1, x2)  =  llc9_in_ga(x1)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
0  =  0
llc9_out_ga(x1, x2)  =  llc9_out_ga(x1, x2)
selectc19_in_aaga(x1, x2, x3, x4)  =  selectc19_in_aaga(x3)
U22_aaga(x1, x2, x3, x4, x5)  =  U22_aaga(x3, x5)
selectc24_in_aga(x1, x2, x3)  =  selectc24_in_aga(x2)
U15_aga(x1, x2, x3, x4, x5)  =  U15_aga(x3, x5)
selectc24_out_aga(x1, x2, x3)  =  selectc24_out_aga(x2, x3)
selectc19_out_aaga(x1, x2, x3, x4)  =  selectc19_out_aaga(x3, x4)
llc35_in_ag(x1, x2)  =  llc35_in_ag(x2)
U19_ag(x1, x2, x3, x4)  =  U19_ag(x3, x4)
[]  =  []
llc35_out_ag(x1, x2)  =  llc35_out_ag(x1, x2)
LL9_IN_GA(x1, x2)  =  LL9_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LL9_IN_GA(s(T16), .(X69, X70)) → LL9_IN_GA(T16, X70)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
LL9_IN_GA(x1, x2)  =  LL9_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LL9_IN_GA(s(T16)) → LL9_IN_GA(T16)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LL9_IN_GA(s(T16)) → LL9_IN_GA(T16)
    The graph contains the following edges 1 > 1

(29) YES

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U10_G(T8, llc9_in_ga(T8, T10))
U10_G(T8, llc9_out_ga(T8, T10)) → U11_G(T8, selectc19_in_aaga(T19, T20, T10, T21))
U11_G(T8, selectc19_out_aaga(T19, T20, T10, T21)) → P20_IN_AG(X7, T21)
P20_IN_AG(T58, T21) → U5_AG(T58, T21, llc35_in_ag(T58, T21))
U5_AG(T58, T21, llc35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

llc9_in_ga(s(T16), .(X69, X70)) → U14_ga(T16, X69, X70, llc9_in_ga(T16, X70))
llc9_in_ga(0, []) → llc9_out_ga(0, [])
U14_ga(T16, X69, X70, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X69, X70))
selectc19_in_aaga(X137, X138, T34, .(X138, X139)) → U22_aaga(X137, X138, T34, X139, selectc24_in_aga(X137, T34, X139))
selectc24_in_aga(X174, .(T45, T47), .(T45, X175)) → U15_aga(X174, T45, T47, X175, selectc24_in_aga(X174, T47, X175))
selectc24_in_aga(X194, .(X194, T52), T52) → selectc24_out_aga(X194, .(X194, T52), T52)
U15_aga(X174, T45, T47, X175, selectc24_out_aga(X174, T47, X175)) → selectc24_out_aga(X174, .(T45, T47), .(T45, X175))
U22_aaga(X137, X138, T34, X139, selectc24_out_aga(X137, T34, X139)) → selectc19_out_aaga(X137, X138, T34, .(X138, X139))
selectc19_in_aaga(X205, X205, T55, T55) → selectc19_out_aaga(X205, X205, T55, T55)
llc35_in_ag(s(X233), .(T69, T71)) → U19_ag(X233, T69, T71, llc35_in_ag(X233, T71))
llc35_in_ag(0, []) → llc35_out_ag(0, [])
U19_ag(X233, T69, T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T69, T71))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
llc9_in_ga(x1, x2)  =  llc9_in_ga(x1)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
0  =  0
llc9_out_ga(x1, x2)  =  llc9_out_ga(x1, x2)
selectc19_in_aaga(x1, x2, x3, x4)  =  selectc19_in_aaga(x3)
U22_aaga(x1, x2, x3, x4, x5)  =  U22_aaga(x3, x5)
selectc24_in_aga(x1, x2, x3)  =  selectc24_in_aga(x2)
U15_aga(x1, x2, x3, x4, x5)  =  U15_aga(x3, x5)
selectc24_out_aga(x1, x2, x3)  =  selectc24_out_aga(x2, x3)
selectc19_out_aaga(x1, x2, x3, x4)  =  selectc19_out_aaga(x3, x4)
llc35_in_ag(x1, x2)  =  llc35_in_ag(x2)
U19_ag(x1, x2, x3, x4)  =  U19_ag(x3, x4)
[]  =  []
llc35_out_ag(x1, x2)  =  llc35_out_ag(x1, x2)
T1_IN_G(x1)  =  T1_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
U11_G(x1, x2)  =  U11_G(x1, x2)
P20_IN_AG(x1, x2)  =  P20_IN_AG(x2)
U5_AG(x1, x2, x3)  =  U5_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

T1_IN_G(s(T8)) → U10_G(T8, llc9_in_ga(T8))
U10_G(T8, llc9_out_ga(T8, T10)) → U11_G(T8, selectc19_in_aaga(T10))
U11_G(T8, selectc19_out_aaga(T10, T21)) → P20_IN_AG(T21)
P20_IN_AG(T21) → U5_AG(T21, llc35_in_ag(T21))
U5_AG(T21, llc35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

llc9_in_ga(s(T16)) → U14_ga(T16, llc9_in_ga(T16))
llc9_in_ga(0) → llc9_out_ga(0, [])
U14_ga(T16, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X70))
selectc19_in_aaga(T34) → U22_aaga(T34, selectc24_in_aga(T34))
selectc24_in_aga(.(T47)) → U15_aga(T47, selectc24_in_aga(T47))
selectc24_in_aga(.(T52)) → selectc24_out_aga(.(T52), T52)
U15_aga(T47, selectc24_out_aga(T47, X175)) → selectc24_out_aga(.(T47), .(X175))
U22_aaga(T34, selectc24_out_aga(T34, X139)) → selectc19_out_aaga(T34, .(X139))
selectc19_in_aaga(T55) → selectc19_out_aaga(T55, T55)
llc35_in_ag(.(T71)) → U19_ag(T71, llc35_in_ag(T71))
llc35_in_ag([]) → llc35_out_ag(0, [])
U19_ag(T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T71))

The set Q consists of the following terms:

llc9_in_ga(x0)
U14_ga(x0, x1)
selectc19_in_aaga(x0)
selectc24_in_aga(x0)
U15_aga(x0, x1)
U22_aaga(x0, x1)
llc35_in_ag(x0)
U19_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


T1_IN_G(s(T8)) → U10_G(T8, llc9_in_ga(T8))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1)) = 1 + x1   
POL(0) = 0   
POL(P20_IN_AG(x1)) = x1   
POL(T1_IN_G(x1)) = x1   
POL(U10_G(x1, x2)) = x2   
POL(U11_G(x1, x2)) = x2   
POL(U14_ga(x1, x2)) = 1 + x2   
POL(U15_aga(x1, x2)) = 1 + x2   
POL(U19_ag(x1, x2)) = 1 + x2   
POL(U22_aaga(x1, x2)) = x2   
POL(U5_AG(x1, x2)) = x2   
POL([]) = 0   
POL(llc35_in_ag(x1)) = x1   
POL(llc35_out_ag(x1, x2)) = x1   
POL(llc9_in_ga(x1)) = x1   
POL(llc9_out_ga(x1, x2)) = x2   
POL(s(x1)) = 1 + x1   
POL(selectc19_in_aaga(x1)) = x1   
POL(selectc19_out_aaga(x1, x2)) = x2   
POL(selectc24_in_aga(x1)) = x1   
POL(selectc24_out_aga(x1, x2)) = 1 + x2   

The following usable rules [FROCOS05] were oriented:

llc9_in_ga(s(T16)) → U14_ga(T16, llc9_in_ga(T16))
llc9_in_ga(0) → llc9_out_ga(0, [])
selectc19_in_aaga(T34) → U22_aaga(T34, selectc24_in_aga(T34))
selectc19_in_aaga(T55) → selectc19_out_aaga(T55, T55)
llc35_in_ag(.(T71)) → U19_ag(T71, llc35_in_ag(T71))
llc35_in_ag([]) → llc35_out_ag(0, [])
U14_ga(T16, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X70))
selectc24_in_aga(.(T47)) → U15_aga(T47, selectc24_in_aga(T47))
selectc24_in_aga(.(T52)) → selectc24_out_aga(.(T52), T52)
U22_aaga(T34, selectc24_out_aga(T34, X139)) → selectc19_out_aaga(T34, .(X139))
U15_aga(T47, selectc24_out_aga(T47, X175)) → selectc24_out_aga(.(T47), .(X175))
U19_ag(T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T71))

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U10_G(T8, llc9_out_ga(T8, T10)) → U11_G(T8, selectc19_in_aaga(T10))
U11_G(T8, selectc19_out_aaga(T10, T21)) → P20_IN_AG(T21)
P20_IN_AG(T21) → U5_AG(T21, llc35_in_ag(T21))
U5_AG(T21, llc35_out_ag(T58, T21)) → T1_IN_G(T58)

The TRS R consists of the following rules:

llc9_in_ga(s(T16)) → U14_ga(T16, llc9_in_ga(T16))
llc9_in_ga(0) → llc9_out_ga(0, [])
U14_ga(T16, llc9_out_ga(T16, X70)) → llc9_out_ga(s(T16), .(X70))
selectc19_in_aaga(T34) → U22_aaga(T34, selectc24_in_aga(T34))
selectc24_in_aga(.(T47)) → U15_aga(T47, selectc24_in_aga(T47))
selectc24_in_aga(.(T52)) → selectc24_out_aga(.(T52), T52)
U15_aga(T47, selectc24_out_aga(T47, X175)) → selectc24_out_aga(.(T47), .(X175))
U22_aaga(T34, selectc24_out_aga(T34, X139)) → selectc19_out_aaga(T34, .(X139))
selectc19_in_aaga(T55) → selectc19_out_aaga(T55, T55)
llc35_in_ag(.(T71)) → U19_ag(T71, llc35_in_ag(T71))
llc35_in_ag([]) → llc35_out_ag(0, [])
U19_ag(T71, llc35_out_ag(X233, T71)) → llc35_out_ag(s(X233), .(T71))

The set Q consists of the following terms:

llc9_in_ga(x0)
U14_ga(x0, x1)
selectc19_in_aaga(x0)
selectc24_in_aga(x0)
U15_aga(x0, x1)
U22_aaga(x0, x1)
llc35_in_ag(x0)
U19_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(35) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.

(36) TRUE