(0) Obligation:
Clauses:
sublist(Xs, Ys) :- ','(app(X1, Zs, Ys), app(Xs, X2, Zs)).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
Queries:
sublist(a,g).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
app7([], T23, T23).
app7(.(T30, T33), X57, .(T30, T32)) :- app7(T33, X57, T32).
p3([], T16, T16, T7, X9) :- app7(T7, X9, T16).
p3(.(X84, X85), X86, .(X84, T38), T7, X9) :- p3(X85, X86, T38, T7, X9).
sublist1(T7, T6) :- p3(X7, X8, T6, T7, X9).
Queries:
sublist1(a,g).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublist1_in: (f,b)
p3_in: (f,f,b,f,f)
app7_in: (f,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist1_in_ag(T7, T6) → U4_ag(T7, T6, p3_in_aagaa(X7, X8, T6, T7, X9))
p3_in_aagaa([], T16, T16, T7, X9) → U2_aagaa(T16, T7, X9, app7_in_aag(T7, X9, T16))
app7_in_aag([], T23, T23) → app7_out_aag([], T23, T23)
app7_in_aag(.(T30, T33), X57, .(T30, T32)) → U1_aag(T30, T33, X57, T32, app7_in_aag(T33, X57, T32))
U1_aag(T30, T33, X57, T32, app7_out_aag(T33, X57, T32)) → app7_out_aag(.(T30, T33), X57, .(T30, T32))
U2_aagaa(T16, T7, X9, app7_out_aag(T7, X9, T16)) → p3_out_aagaa([], T16, T16, T7, X9)
p3_in_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9) → U3_aagaa(X84, X85, X86, T38, T7, X9, p3_in_aagaa(X85, X86, T38, T7, X9))
U3_aagaa(X84, X85, X86, T38, T7, X9, p3_out_aagaa(X85, X86, T38, T7, X9)) → p3_out_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9)
U4_ag(T7, T6, p3_out_aagaa(X7, X8, T6, T7, X9)) → sublist1_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
sublist1_in_ag(
x1,
x2) =
sublist1_in_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
p3_in_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_in_aagaa(
x3)
U2_aagaa(
x1,
x2,
x3,
x4) =
U2_aagaa(
x1,
x4)
app7_in_aag(
x1,
x2,
x3) =
app7_in_aag(
x3)
app7_out_aag(
x1,
x2,
x3) =
app7_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
p3_out_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_out_aagaa(
x1,
x2,
x4,
x5)
U3_aagaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_aagaa(
x1,
x7)
sublist1_out_ag(
x1,
x2) =
sublist1_out_ag(
x1)
[] =
[]
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
sublist1_in_ag(T7, T6) → U4_ag(T7, T6, p3_in_aagaa(X7, X8, T6, T7, X9))
p3_in_aagaa([], T16, T16, T7, X9) → U2_aagaa(T16, T7, X9, app7_in_aag(T7, X9, T16))
app7_in_aag([], T23, T23) → app7_out_aag([], T23, T23)
app7_in_aag(.(T30, T33), X57, .(T30, T32)) → U1_aag(T30, T33, X57, T32, app7_in_aag(T33, X57, T32))
U1_aag(T30, T33, X57, T32, app7_out_aag(T33, X57, T32)) → app7_out_aag(.(T30, T33), X57, .(T30, T32))
U2_aagaa(T16, T7, X9, app7_out_aag(T7, X9, T16)) → p3_out_aagaa([], T16, T16, T7, X9)
p3_in_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9) → U3_aagaa(X84, X85, X86, T38, T7, X9, p3_in_aagaa(X85, X86, T38, T7, X9))
U3_aagaa(X84, X85, X86, T38, T7, X9, p3_out_aagaa(X85, X86, T38, T7, X9)) → p3_out_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9)
U4_ag(T7, T6, p3_out_aagaa(X7, X8, T6, T7, X9)) → sublist1_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
sublist1_in_ag(
x1,
x2) =
sublist1_in_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
p3_in_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_in_aagaa(
x3)
U2_aagaa(
x1,
x2,
x3,
x4) =
U2_aagaa(
x1,
x4)
app7_in_aag(
x1,
x2,
x3) =
app7_in_aag(
x3)
app7_out_aag(
x1,
x2,
x3) =
app7_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
p3_out_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_out_aagaa(
x1,
x2,
x4,
x5)
U3_aagaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_aagaa(
x1,
x7)
sublist1_out_ag(
x1,
x2) =
sublist1_out_ag(
x1)
[] =
[]
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST1_IN_AG(T7, T6) → U4_AG(T7, T6, p3_in_aagaa(X7, X8, T6, T7, X9))
SUBLIST1_IN_AG(T7, T6) → P3_IN_AAGAA(X7, X8, T6, T7, X9)
P3_IN_AAGAA([], T16, T16, T7, X9) → U2_AAGAA(T16, T7, X9, app7_in_aag(T7, X9, T16))
P3_IN_AAGAA([], T16, T16, T7, X9) → APP7_IN_AAG(T7, X9, T16)
APP7_IN_AAG(.(T30, T33), X57, .(T30, T32)) → U1_AAG(T30, T33, X57, T32, app7_in_aag(T33, X57, T32))
APP7_IN_AAG(.(T30, T33), X57, .(T30, T32)) → APP7_IN_AAG(T33, X57, T32)
P3_IN_AAGAA(.(X84, X85), X86, .(X84, T38), T7, X9) → U3_AAGAA(X84, X85, X86, T38, T7, X9, p3_in_aagaa(X85, X86, T38, T7, X9))
P3_IN_AAGAA(.(X84, X85), X86, .(X84, T38), T7, X9) → P3_IN_AAGAA(X85, X86, T38, T7, X9)
The TRS R consists of the following rules:
sublist1_in_ag(T7, T6) → U4_ag(T7, T6, p3_in_aagaa(X7, X8, T6, T7, X9))
p3_in_aagaa([], T16, T16, T7, X9) → U2_aagaa(T16, T7, X9, app7_in_aag(T7, X9, T16))
app7_in_aag([], T23, T23) → app7_out_aag([], T23, T23)
app7_in_aag(.(T30, T33), X57, .(T30, T32)) → U1_aag(T30, T33, X57, T32, app7_in_aag(T33, X57, T32))
U1_aag(T30, T33, X57, T32, app7_out_aag(T33, X57, T32)) → app7_out_aag(.(T30, T33), X57, .(T30, T32))
U2_aagaa(T16, T7, X9, app7_out_aag(T7, X9, T16)) → p3_out_aagaa([], T16, T16, T7, X9)
p3_in_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9) → U3_aagaa(X84, X85, X86, T38, T7, X9, p3_in_aagaa(X85, X86, T38, T7, X9))
U3_aagaa(X84, X85, X86, T38, T7, X9, p3_out_aagaa(X85, X86, T38, T7, X9)) → p3_out_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9)
U4_ag(T7, T6, p3_out_aagaa(X7, X8, T6, T7, X9)) → sublist1_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
sublist1_in_ag(
x1,
x2) =
sublist1_in_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
p3_in_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_in_aagaa(
x3)
U2_aagaa(
x1,
x2,
x3,
x4) =
U2_aagaa(
x1,
x4)
app7_in_aag(
x1,
x2,
x3) =
app7_in_aag(
x3)
app7_out_aag(
x1,
x2,
x3) =
app7_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
p3_out_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_out_aagaa(
x1,
x2,
x4,
x5)
U3_aagaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_aagaa(
x1,
x7)
sublist1_out_ag(
x1,
x2) =
sublist1_out_ag(
x1)
[] =
[]
SUBLIST1_IN_AG(
x1,
x2) =
SUBLIST1_IN_AG(
x2)
U4_AG(
x1,
x2,
x3) =
U4_AG(
x3)
P3_IN_AAGAA(
x1,
x2,
x3,
x4,
x5) =
P3_IN_AAGAA(
x3)
U2_AAGAA(
x1,
x2,
x3,
x4) =
U2_AAGAA(
x1,
x4)
APP7_IN_AAG(
x1,
x2,
x3) =
APP7_IN_AAG(
x3)
U1_AAG(
x1,
x2,
x3,
x4,
x5) =
U1_AAG(
x1,
x5)
U3_AAGAA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_AAGAA(
x1,
x7)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUBLIST1_IN_AG(T7, T6) → U4_AG(T7, T6, p3_in_aagaa(X7, X8, T6, T7, X9))
SUBLIST1_IN_AG(T7, T6) → P3_IN_AAGAA(X7, X8, T6, T7, X9)
P3_IN_AAGAA([], T16, T16, T7, X9) → U2_AAGAA(T16, T7, X9, app7_in_aag(T7, X9, T16))
P3_IN_AAGAA([], T16, T16, T7, X9) → APP7_IN_AAG(T7, X9, T16)
APP7_IN_AAG(.(T30, T33), X57, .(T30, T32)) → U1_AAG(T30, T33, X57, T32, app7_in_aag(T33, X57, T32))
APP7_IN_AAG(.(T30, T33), X57, .(T30, T32)) → APP7_IN_AAG(T33, X57, T32)
P3_IN_AAGAA(.(X84, X85), X86, .(X84, T38), T7, X9) → U3_AAGAA(X84, X85, X86, T38, T7, X9, p3_in_aagaa(X85, X86, T38, T7, X9))
P3_IN_AAGAA(.(X84, X85), X86, .(X84, T38), T7, X9) → P3_IN_AAGAA(X85, X86, T38, T7, X9)
The TRS R consists of the following rules:
sublist1_in_ag(T7, T6) → U4_ag(T7, T6, p3_in_aagaa(X7, X8, T6, T7, X9))
p3_in_aagaa([], T16, T16, T7, X9) → U2_aagaa(T16, T7, X9, app7_in_aag(T7, X9, T16))
app7_in_aag([], T23, T23) → app7_out_aag([], T23, T23)
app7_in_aag(.(T30, T33), X57, .(T30, T32)) → U1_aag(T30, T33, X57, T32, app7_in_aag(T33, X57, T32))
U1_aag(T30, T33, X57, T32, app7_out_aag(T33, X57, T32)) → app7_out_aag(.(T30, T33), X57, .(T30, T32))
U2_aagaa(T16, T7, X9, app7_out_aag(T7, X9, T16)) → p3_out_aagaa([], T16, T16, T7, X9)
p3_in_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9) → U3_aagaa(X84, X85, X86, T38, T7, X9, p3_in_aagaa(X85, X86, T38, T7, X9))
U3_aagaa(X84, X85, X86, T38, T7, X9, p3_out_aagaa(X85, X86, T38, T7, X9)) → p3_out_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9)
U4_ag(T7, T6, p3_out_aagaa(X7, X8, T6, T7, X9)) → sublist1_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
sublist1_in_ag(
x1,
x2) =
sublist1_in_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
p3_in_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_in_aagaa(
x3)
U2_aagaa(
x1,
x2,
x3,
x4) =
U2_aagaa(
x1,
x4)
app7_in_aag(
x1,
x2,
x3) =
app7_in_aag(
x3)
app7_out_aag(
x1,
x2,
x3) =
app7_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
p3_out_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_out_aagaa(
x1,
x2,
x4,
x5)
U3_aagaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_aagaa(
x1,
x7)
sublist1_out_ag(
x1,
x2) =
sublist1_out_ag(
x1)
[] =
[]
SUBLIST1_IN_AG(
x1,
x2) =
SUBLIST1_IN_AG(
x2)
U4_AG(
x1,
x2,
x3) =
U4_AG(
x3)
P3_IN_AAGAA(
x1,
x2,
x3,
x4,
x5) =
P3_IN_AAGAA(
x3)
U2_AAGAA(
x1,
x2,
x3,
x4) =
U2_AAGAA(
x1,
x4)
APP7_IN_AAG(
x1,
x2,
x3) =
APP7_IN_AAG(
x3)
U1_AAG(
x1,
x2,
x3,
x4,
x5) =
U1_AAG(
x1,
x5)
U3_AAGAA(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_AAGAA(
x1,
x7)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP7_IN_AAG(.(T30, T33), X57, .(T30, T32)) → APP7_IN_AAG(T33, X57, T32)
The TRS R consists of the following rules:
sublist1_in_ag(T7, T6) → U4_ag(T7, T6, p3_in_aagaa(X7, X8, T6, T7, X9))
p3_in_aagaa([], T16, T16, T7, X9) → U2_aagaa(T16, T7, X9, app7_in_aag(T7, X9, T16))
app7_in_aag([], T23, T23) → app7_out_aag([], T23, T23)
app7_in_aag(.(T30, T33), X57, .(T30, T32)) → U1_aag(T30, T33, X57, T32, app7_in_aag(T33, X57, T32))
U1_aag(T30, T33, X57, T32, app7_out_aag(T33, X57, T32)) → app7_out_aag(.(T30, T33), X57, .(T30, T32))
U2_aagaa(T16, T7, X9, app7_out_aag(T7, X9, T16)) → p3_out_aagaa([], T16, T16, T7, X9)
p3_in_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9) → U3_aagaa(X84, X85, X86, T38, T7, X9, p3_in_aagaa(X85, X86, T38, T7, X9))
U3_aagaa(X84, X85, X86, T38, T7, X9, p3_out_aagaa(X85, X86, T38, T7, X9)) → p3_out_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9)
U4_ag(T7, T6, p3_out_aagaa(X7, X8, T6, T7, X9)) → sublist1_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
sublist1_in_ag(
x1,
x2) =
sublist1_in_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
p3_in_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_in_aagaa(
x3)
U2_aagaa(
x1,
x2,
x3,
x4) =
U2_aagaa(
x1,
x4)
app7_in_aag(
x1,
x2,
x3) =
app7_in_aag(
x3)
app7_out_aag(
x1,
x2,
x3) =
app7_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
p3_out_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_out_aagaa(
x1,
x2,
x4,
x5)
U3_aagaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_aagaa(
x1,
x7)
sublist1_out_ag(
x1,
x2) =
sublist1_out_ag(
x1)
[] =
[]
APP7_IN_AAG(
x1,
x2,
x3) =
APP7_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP7_IN_AAG(.(T30, T33), X57, .(T30, T32)) → APP7_IN_AAG(T33, X57, T32)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APP7_IN_AAG(
x1,
x2,
x3) =
APP7_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP7_IN_AAG(.(T30, T32)) → APP7_IN_AAG(T32)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP7_IN_AAG(.(T30, T32)) → APP7_IN_AAG(T32)
The graph contains the following edges 1 > 1
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P3_IN_AAGAA(.(X84, X85), X86, .(X84, T38), T7, X9) → P3_IN_AAGAA(X85, X86, T38, T7, X9)
The TRS R consists of the following rules:
sublist1_in_ag(T7, T6) → U4_ag(T7, T6, p3_in_aagaa(X7, X8, T6, T7, X9))
p3_in_aagaa([], T16, T16, T7, X9) → U2_aagaa(T16, T7, X9, app7_in_aag(T7, X9, T16))
app7_in_aag([], T23, T23) → app7_out_aag([], T23, T23)
app7_in_aag(.(T30, T33), X57, .(T30, T32)) → U1_aag(T30, T33, X57, T32, app7_in_aag(T33, X57, T32))
U1_aag(T30, T33, X57, T32, app7_out_aag(T33, X57, T32)) → app7_out_aag(.(T30, T33), X57, .(T30, T32))
U2_aagaa(T16, T7, X9, app7_out_aag(T7, X9, T16)) → p3_out_aagaa([], T16, T16, T7, X9)
p3_in_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9) → U3_aagaa(X84, X85, X86, T38, T7, X9, p3_in_aagaa(X85, X86, T38, T7, X9))
U3_aagaa(X84, X85, X86, T38, T7, X9, p3_out_aagaa(X85, X86, T38, T7, X9)) → p3_out_aagaa(.(X84, X85), X86, .(X84, T38), T7, X9)
U4_ag(T7, T6, p3_out_aagaa(X7, X8, T6, T7, X9)) → sublist1_out_ag(T7, T6)
The argument filtering Pi contains the following mapping:
sublist1_in_ag(
x1,
x2) =
sublist1_in_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
p3_in_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_in_aagaa(
x3)
U2_aagaa(
x1,
x2,
x3,
x4) =
U2_aagaa(
x1,
x4)
app7_in_aag(
x1,
x2,
x3) =
app7_in_aag(
x3)
app7_out_aag(
x1,
x2,
x3) =
app7_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U1_aag(
x1,
x2,
x3,
x4,
x5) =
U1_aag(
x1,
x5)
p3_out_aagaa(
x1,
x2,
x3,
x4,
x5) =
p3_out_aagaa(
x1,
x2,
x4,
x5)
U3_aagaa(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U3_aagaa(
x1,
x7)
sublist1_out_ag(
x1,
x2) =
sublist1_out_ag(
x1)
[] =
[]
P3_IN_AAGAA(
x1,
x2,
x3,
x4,
x5) =
P3_IN_AAGAA(
x3)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P3_IN_AAGAA(.(X84, X85), X86, .(X84, T38), T7, X9) → P3_IN_AAGAA(X85, X86, T38, T7, X9)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
P3_IN_AAGAA(
x1,
x2,
x3,
x4,
x5) =
P3_IN_AAGAA(
x3)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P3_IN_AAGAA(.(X84, T38)) → P3_IN_AAGAA(T38)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P3_IN_AAGAA(.(X84, T38)) → P3_IN_AAGAA(T38)
The graph contains the following edges 1 > 1
(22) YES