(0) Obligation:

Clauses:

ss(Xs, Ys) :- ','(perm(Xs, Ys), ordered(Ys)).
perm([], []).
perm(Xs, .(X, Ys)) :- ','(app(X1s, .(X, X2s), Xs), ','(app(X1s, X2s, Zs), perm(Zs, Ys))).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
ordered([]).
ordered(.(X1, [])).
ordered(.(X, .(Y, Xs))) :- ','(less(X, s(Y)), ordered(.(Y, Xs))).
less(0, s(X2)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

ss(a,g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

app18([], T28, X46, .(T28, X46)).
app18(.(X66, X67), T33, X68, .(X66, T35)) :- app18(X67, T33, X68, T35).
app28([], T47, T47).
app28(.(T54, T57), T58, .(T54, X101)) :- app28(T57, T58, X101).
perm38([], []).
perm38(T70, .(T68, T69)) :- app18(X120, T68, X121, T70).
perm38(T70, .(T68, T69)) :- ','(app18(T73, T68, T74, T70), app28(T73, T74, X122)).
perm38(T70, .(T68, T69)) :- ','(app18(T73, T68, T74, T70), ','(app28(T73, T74, T79), perm38(T79, T69))).
ordered39(T88, []).
ordered39(T95, .(T96, T97)) :- less61(T95, T96).
ordered39(T95, .(T96, T97)) :- ','(less61(T95, T96), ordered39(T96, T97)).
less69(0, s(T119)).
less69(s(T124), s(T125)) :- less69(T124, T125).
less61(0, T106).
less61(s(T111), T112) :- less69(T111, T112).
ss1([], []).
ss1(T17, .(T15, T16)) :- app18(X23, T15, X24, T17).
ss1(T17, .(T15, T16)) :- ','(app18(T20, T15, T21, T17), app28(T20, T21, X25)).
ss1(T17, .(T15, T16)) :- ','(app18(T20, T15, T21, T17), ','(app28(T20, T21, T40), perm38(T40, T16))).
ss1(T17, .(T15, T16)) :- ','(app18(T20, T15, T21, T17), ','(app28(T20, T21, T40), ','(perm38(T40, T16), ordered39(T15, T16)))).

Queries:

ss1(a,g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ss1_in: (f,b)
app18_in: (f,b,f,f)
app28_in: (f,f,f)
perm38_in: (f,b)
ordered39_in: (b,b)
less61_in: (b,b)
less69_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_AG(T17, .(T15, T16)) → U12_AG(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
SS1_IN_AG(T17, .(T15, T16)) → APP18_IN_AGAA(X23, T15, X24, T17)
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → U1_AGAA(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)
SS1_IN_AG(T17, .(T15, T16)) → U13_AG(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_AG(T17, T15, T16, app28_in_aaa(T20, T21, X25))
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → APP28_IN_AAA(T20, T21, X25)
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → U2_AAA(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_AG(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_AG(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_AG(T17, T15, T16, perm38_in_ag(T40, T16))
U15_AG(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → PERM38_IN_AG(T40, T16)
PERM38_IN_AG(T70, .(T68, T69)) → U3_AG(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
PERM38_IN_AG(T70, .(T68, T69)) → APP18_IN_AGAA(X120, T68, X121, T70)
PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_AG(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → APP28_IN_AAA(T73, T74, X122)
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_AG(T70, T68, T69, perm38_in_ag(T79, T69))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)
U16_AG(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_AG(T17, T15, T16, ordered39_in_gg(T15, T16))
U16_AG(T17, T15, T16, perm38_out_ag(T40, T16)) → ORDERED39_IN_GG(T15, T16)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))
ORDERED39_IN_GG(T95, .(T96, T97)) → LESS61_IN_GG(T95, T96)
LESS61_IN_GG(s(T111), T112) → U11_GG(T111, T112, less69_in_gg(T111, T112))
LESS61_IN_GG(s(T111), T112) → LESS69_IN_GG(T111, T112)
LESS69_IN_GG(s(T124), s(T125)) → U10_GG(T124, T125, less69_in_gg(T124, T125))
LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → U9_GG(T95, T96, T97, ordered39_in_gg(T96, T97))
U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)
SS1_IN_AG(x1, x2)  =  SS1_IN_AG(x2)
U12_AG(x1, x2, x3, x4)  =  U12_AG(x4)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)
U1_AGAA(x1, x2, x3, x4, x5, x6)  =  U1_AGAA(x6)
U13_AG(x1, x2, x3, x4)  =  U13_AG(x2, x3, x4)
U14_AG(x1, x2, x3, x4)  =  U14_AG(x4)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA
U2_AAA(x1, x2, x3, x4, x5)  =  U2_AAA(x5)
U15_AG(x1, x2, x3, x4)  =  U15_AG(x2, x3, x4)
U16_AG(x1, x2, x3, x4)  =  U16_AG(x2, x3, x4)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x4)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x3, x4)
U5_AG(x1, x2, x3, x4)  =  U5_AG(x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x3, x4)
U7_AG(x1, x2, x3, x4)  =  U7_AG(x4)
U17_AG(x1, x2, x3, x4)  =  U17_AG(x4)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x2, x3, x4)
LESS61_IN_GG(x1, x2)  =  LESS61_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x3)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)
U10_GG(x1, x2, x3)  =  U10_GG(x3)
U9_GG(x1, x2, x3, x4)  =  U9_GG(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_AG(T17, .(T15, T16)) → U12_AG(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
SS1_IN_AG(T17, .(T15, T16)) → APP18_IN_AGAA(X23, T15, X24, T17)
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → U1_AGAA(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)
SS1_IN_AG(T17, .(T15, T16)) → U13_AG(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_AG(T17, T15, T16, app28_in_aaa(T20, T21, X25))
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → APP28_IN_AAA(T20, T21, X25)
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → U2_AAA(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_AG(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_AG(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_AG(T17, T15, T16, perm38_in_ag(T40, T16))
U15_AG(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → PERM38_IN_AG(T40, T16)
PERM38_IN_AG(T70, .(T68, T69)) → U3_AG(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
PERM38_IN_AG(T70, .(T68, T69)) → APP18_IN_AGAA(X120, T68, X121, T70)
PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_AG(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → APP28_IN_AAA(T73, T74, X122)
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_AG(T70, T68, T69, perm38_in_ag(T79, T69))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)
U16_AG(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_AG(T17, T15, T16, ordered39_in_gg(T15, T16))
U16_AG(T17, T15, T16, perm38_out_ag(T40, T16)) → ORDERED39_IN_GG(T15, T16)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))
ORDERED39_IN_GG(T95, .(T96, T97)) → LESS61_IN_GG(T95, T96)
LESS61_IN_GG(s(T111), T112) → U11_GG(T111, T112, less69_in_gg(T111, T112))
LESS61_IN_GG(s(T111), T112) → LESS69_IN_GG(T111, T112)
LESS69_IN_GG(s(T124), s(T125)) → U10_GG(T124, T125, less69_in_gg(T124, T125))
LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → U9_GG(T95, T96, T97, ordered39_in_gg(T96, T97))
U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)
SS1_IN_AG(x1, x2)  =  SS1_IN_AG(x2)
U12_AG(x1, x2, x3, x4)  =  U12_AG(x4)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)
U1_AGAA(x1, x2, x3, x4, x5, x6)  =  U1_AGAA(x6)
U13_AG(x1, x2, x3, x4)  =  U13_AG(x2, x3, x4)
U14_AG(x1, x2, x3, x4)  =  U14_AG(x4)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA
U2_AAA(x1, x2, x3, x4, x5)  =  U2_AAA(x5)
U15_AG(x1, x2, x3, x4)  =  U15_AG(x2, x3, x4)
U16_AG(x1, x2, x3, x4)  =  U16_AG(x2, x3, x4)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x4)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x3, x4)
U5_AG(x1, x2, x3, x4)  =  U5_AG(x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x3, x4)
U7_AG(x1, x2, x3, x4)  =  U7_AG(x4)
U17_AG(x1, x2, x3, x4)  =  U17_AG(x4)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x2, x3, x4)
LESS61_IN_GG(x1, x2)  =  LESS61_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x3)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)
U10_GG(x1, x2, x3)  =  U10_GG(x3)
U9_GG(x1, x2, x3, x4)  =  U9_GG(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 22 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))

The TRS R consists of the following rules:

less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GG(T96, T97, less61_out_gg) → ORDERED39_IN_GG(T96, T97)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T96, T97, less61_in_gg(T95, T96))

The TRS R consists of the following rules:

less61_in_gg(0, T106) → less61_out_gg
less61_in_gg(s(T111), T112) → U11_gg(less69_in_gg(T111, T112))
U11_gg(less69_out_gg) → less61_out_gg
less69_in_gg(0, s(T119)) → less69_out_gg
less69_in_gg(s(T124), s(T125)) → U10_gg(less69_in_gg(T124, T125))
U10_gg(less69_out_gg) → less69_out_gg

The set Q consists of the following terms:

less61_in_gg(x0, x1)
U11_gg(x0)
less69_in_gg(x0, x1)
U10_gg(x0)

We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T96, T97, less61_in_gg(T95, T96))
    The graph contains the following edges 2 > 1, 2 > 2

  • U8_GG(T96, T97, less61_out_gg) → ORDERED39_IN_GG(T96, T97)
    The graph contains the following edges 1 >= 1, 2 >= 2

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP28_IN_AAAAPP28_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP28_IN_AAA evaluates to t =APP28_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP28_IN_AAA to APP28_IN_AAA.



(29) NO

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(T33) → APP18_IN_AGAA(T33)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(35) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP18_IN_AGAA(T33) evaluates to t =APP18_IN_AGAA(T33)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP18_IN_AGAA(T33) to APP18_IN_AGAA(T33).



(36) NO

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg
U8_gg(x1, x2, x3, x4)  =  U8_gg(x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg
U10_gg(x1, x2, x3)  =  U10_gg(x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x4)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x3, x4)

We have to consider all (P,R,Pi)-chains

(38) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(39) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)

The TRS R consists of the following rules:

app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))

The argument filtering Pi contains the following mapping:
[]  =  []
.(x1, x2)  =  .(x1, x2)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x6)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x3, x4)

We have to consider all (P,R,Pi)-chains

(40) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(.(T68, T69)) → U4_AG(T69, app18_in_agaa(T68))
U4_AG(T69, app18_out_agaa) → U6_AG(T69, app28_in_aaa)
U6_AG(T69, app28_out_aaa) → PERM38_IN_AG(T69)

The TRS R consists of the following rules:

app18_in_agaa(T28) → app18_out_agaa
app18_in_agaa(T33) → U1_agaa(app18_in_agaa(T33))
app28_in_aaaapp28_out_aaa
app28_in_aaaU2_aaa(app28_in_aaa)
U1_agaa(app18_out_agaa) → app18_out_agaa
U2_aaa(app28_out_aaa) → app28_out_aaa

The set Q consists of the following terms:

app18_in_agaa(x0)
app28_in_aaa
U1_agaa(x0)
U2_aaa(x0)

We have to consider all (P,Q,R)-chains.

(42) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U4_AG(T69, app18_out_agaa) → U6_AG(T69, app28_in_aaa)
    The graph contains the following edges 1 >= 1

  • U6_AG(T69, app28_out_aaa) → PERM38_IN_AG(T69)
    The graph contains the following edges 1 >= 1

  • PERM38_IN_AG(.(T68, T69)) → U4_AG(T69, app18_in_agaa(T68))
    The graph contains the following edges 1 > 1

(43) YES

(44) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ss1_in: (f,b)
app18_in: (f,b,f,f)
app28_in: (f,f,f)
perm38_in: (f,b)
ordered39_in: (b,b)
less61_in: (b,b)
less69_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(45) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)

(46) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_AG(T17, .(T15, T16)) → U12_AG(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
SS1_IN_AG(T17, .(T15, T16)) → APP18_IN_AGAA(X23, T15, X24, T17)
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → U1_AGAA(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)
SS1_IN_AG(T17, .(T15, T16)) → U13_AG(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_AG(T17, T15, T16, app28_in_aaa(T20, T21, X25))
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → APP28_IN_AAA(T20, T21, X25)
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → U2_AAA(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_AG(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_AG(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_AG(T17, T15, T16, perm38_in_ag(T40, T16))
U15_AG(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → PERM38_IN_AG(T40, T16)
PERM38_IN_AG(T70, .(T68, T69)) → U3_AG(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
PERM38_IN_AG(T70, .(T68, T69)) → APP18_IN_AGAA(X120, T68, X121, T70)
PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_AG(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → APP28_IN_AAA(T73, T74, X122)
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_AG(T70, T68, T69, perm38_in_ag(T79, T69))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)
U16_AG(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_AG(T17, T15, T16, ordered39_in_gg(T15, T16))
U16_AG(T17, T15, T16, perm38_out_ag(T40, T16)) → ORDERED39_IN_GG(T15, T16)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))
ORDERED39_IN_GG(T95, .(T96, T97)) → LESS61_IN_GG(T95, T96)
LESS61_IN_GG(s(T111), T112) → U11_GG(T111, T112, less69_in_gg(T111, T112))
LESS61_IN_GG(s(T111), T112) → LESS69_IN_GG(T111, T112)
LESS69_IN_GG(s(T124), s(T125)) → U10_GG(T124, T125, less69_in_gg(T124, T125))
LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → U9_GG(T95, T96, T97, ordered39_in_gg(T96, T97))
U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)
SS1_IN_AG(x1, x2)  =  SS1_IN_AG(x2)
U12_AG(x1, x2, x3, x4)  =  U12_AG(x2, x3, x4)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)
U1_AGAA(x1, x2, x3, x4, x5, x6)  =  U1_AGAA(x3, x6)
U13_AG(x1, x2, x3, x4)  =  U13_AG(x2, x3, x4)
U14_AG(x1, x2, x3, x4)  =  U14_AG(x2, x3, x4)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA
U2_AAA(x1, x2, x3, x4, x5)  =  U2_AAA(x5)
U15_AG(x1, x2, x3, x4)  =  U15_AG(x2, x3, x4)
U16_AG(x1, x2, x3, x4)  =  U16_AG(x2, x3, x4)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x2, x3, x4)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
U5_AG(x1, x2, x3, x4)  =  U5_AG(x2, x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x2, x3, x4)
U7_AG(x1, x2, x3, x4)  =  U7_AG(x2, x3, x4)
U17_AG(x1, x2, x3, x4)  =  U17_AG(x2, x3, x4)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x1, x2, x3, x4)
LESS61_IN_GG(x1, x2)  =  LESS61_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x1, x2, x3)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)
U10_GG(x1, x2, x3)  =  U10_GG(x1, x2, x3)
U9_GG(x1, x2, x3, x4)  =  U9_GG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(47) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_AG(T17, .(T15, T16)) → U12_AG(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
SS1_IN_AG(T17, .(T15, T16)) → APP18_IN_AGAA(X23, T15, X24, T17)
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → U1_AGAA(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)
SS1_IN_AG(T17, .(T15, T16)) → U13_AG(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_AG(T17, T15, T16, app28_in_aaa(T20, T21, X25))
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → APP28_IN_AAA(T20, T21, X25)
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → U2_AAA(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)
U13_AG(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_AG(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_AG(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_AG(T17, T15, T16, perm38_in_ag(T40, T16))
U15_AG(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → PERM38_IN_AG(T40, T16)
PERM38_IN_AG(T70, .(T68, T69)) → U3_AG(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
PERM38_IN_AG(T70, .(T68, T69)) → APP18_IN_AGAA(X120, T68, X121, T70)
PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_AG(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → APP28_IN_AAA(T73, T74, X122)
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_AG(T70, T68, T69, perm38_in_ag(T79, T69))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)
U16_AG(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_AG(T17, T15, T16, ordered39_in_gg(T15, T16))
U16_AG(T17, T15, T16, perm38_out_ag(T40, T16)) → ORDERED39_IN_GG(T15, T16)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))
ORDERED39_IN_GG(T95, .(T96, T97)) → LESS61_IN_GG(T95, T96)
LESS61_IN_GG(s(T111), T112) → U11_GG(T111, T112, less69_in_gg(T111, T112))
LESS61_IN_GG(s(T111), T112) → LESS69_IN_GG(T111, T112)
LESS69_IN_GG(s(T124), s(T125)) → U10_GG(T124, T125, less69_in_gg(T124, T125))
LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → U9_GG(T95, T96, T97, ordered39_in_gg(T96, T97))
U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)
SS1_IN_AG(x1, x2)  =  SS1_IN_AG(x2)
U12_AG(x1, x2, x3, x4)  =  U12_AG(x2, x3, x4)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)
U1_AGAA(x1, x2, x3, x4, x5, x6)  =  U1_AGAA(x3, x6)
U13_AG(x1, x2, x3, x4)  =  U13_AG(x2, x3, x4)
U14_AG(x1, x2, x3, x4)  =  U14_AG(x2, x3, x4)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA
U2_AAA(x1, x2, x3, x4, x5)  =  U2_AAA(x5)
U15_AG(x1, x2, x3, x4)  =  U15_AG(x2, x3, x4)
U16_AG(x1, x2, x3, x4)  =  U16_AG(x2, x3, x4)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x2, x3, x4)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
U5_AG(x1, x2, x3, x4)  =  U5_AG(x2, x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x2, x3, x4)
U7_AG(x1, x2, x3, x4)  =  U7_AG(x2, x3, x4)
U17_AG(x1, x2, x3, x4)  =  U17_AG(x2, x3, x4)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x1, x2, x3, x4)
LESS61_IN_GG(x1, x2)  =  LESS61_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x1, x2, x3)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)
U10_GG(x1, x2, x3)  =  U10_GG(x1, x2, x3)
U9_GG(x1, x2, x3, x4)  =  U9_GG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(48) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 22 less nodes.

(49) Complex Obligation (AND)

(50) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(51) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(52) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(53) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(55) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
    The graph contains the following edges 1 > 1, 2 > 2

(56) YES

(57) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(58) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(59) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))

The TRS R consists of the following rules:

less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(60) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)
ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))

The TRS R consists of the following rules:

less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))

The set Q consists of the following terms:

less61_in_gg(x0, x1)
U11_gg(x0, x1, x2)
less69_in_gg(x0, x1)
U10_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(62) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ORDERED39_IN_GG(T95, .(T96, T97)) → U8_GG(T95, T96, T97, less61_in_gg(T95, T96))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3

  • U8_GG(T95, T96, T97, less61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)
    The graph contains the following edges 2 >= 1, 4 > 1, 3 >= 2

(63) YES

(64) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA

We have to consider all (P,R,Pi)-chains

(65) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(66) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA

We have to consider all (P,R,Pi)-chains

(67) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP28_IN_AAAAPP28_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(69) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP28_IN_AAA evaluates to t =APP28_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP28_IN_AAA to APP28_IN_AAA.



(70) NO

(71) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)

We have to consider all (P,R,Pi)-chains

(72) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(73) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)

We have to consider all (P,R,Pi)-chains

(74) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(T33) → APP18_IN_AGAA(T33)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(76) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP18_IN_AGAA(T33) evaluates to t =APP18_IN_AGAA(T33)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP18_IN_AGAA(T33) to APP18_IN_AGAA(T33).



(77) NO

(78) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)

The TRS R consists of the following rules:

ss1_in_ag([], []) → ss1_out_ag([], [])
ss1_in_ag(T17, .(T15, T16)) → U12_ag(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U12_ag(T17, T15, T16, app18_out_agaa(X23, T15, X24, T17)) → ss1_out_ag(T17, .(T15, T16))
ss1_in_ag(T17, .(T15, T16)) → U13_ag(T17, T15, T16, app18_in_agaa(T20, T15, T21, T17))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U14_ag(T17, T15, T16, app28_in_aaa(T20, T21, X25))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))
U14_ag(T17, T15, T16, app28_out_aaa(T20, T21, X25)) → ss1_out_ag(T17, .(T15, T16))
U13_ag(T17, T15, T16, app18_out_agaa(T20, T15, T21, T17)) → U15_ag(T17, T15, T16, app28_in_aaa(T20, T21, T40))
U15_ag(T17, T15, T16, app28_out_aaa(T20, T21, T40)) → U16_ag(T17, T15, T16, perm38_in_ag(T40, T16))
perm38_in_ag([], []) → perm38_out_ag([], [])
perm38_in_ag(T70, .(T68, T69)) → U3_ag(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
U3_ag(T70, T68, T69, app18_out_agaa(X120, T68, X121, T70)) → perm38_out_ag(T70, .(T68, T69))
perm38_in_ag(T70, .(T68, T69)) → U4_ag(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U5_ag(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U5_ag(T70, T68, T69, app28_out_aaa(T73, T74, X122)) → perm38_out_ag(T70, .(T68, T69))
U4_ag(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_ag(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_ag(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → U7_ag(T70, T68, T69, perm38_in_ag(T79, T69))
U7_ag(T70, T68, T69, perm38_out_ag(T79, T69)) → perm38_out_ag(T70, .(T68, T69))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → ss1_out_ag(T17, .(T15, T16))
U16_ag(T17, T15, T16, perm38_out_ag(T40, T16)) → U17_ag(T17, T15, T16, ordered39_in_gg(T15, T16))
ordered39_in_gg(T88, []) → ordered39_out_gg(T88, [])
ordered39_in_gg(T95, .(T96, T97)) → U8_gg(T95, T96, T97, less61_in_gg(T95, T96))
less61_in_gg(0, T106) → less61_out_gg(0, T106)
less61_in_gg(s(T111), T112) → U11_gg(T111, T112, less69_in_gg(T111, T112))
less69_in_gg(0, s(T119)) → less69_out_gg(0, s(T119))
less69_in_gg(s(T124), s(T125)) → U10_gg(T124, T125, less69_in_gg(T124, T125))
U10_gg(T124, T125, less69_out_gg(T124, T125)) → less69_out_gg(s(T124), s(T125))
U11_gg(T111, T112, less69_out_gg(T111, T112)) → less61_out_gg(s(T111), T112)
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → ordered39_out_gg(T95, .(T96, T97))
U8_gg(T95, T96, T97, less61_out_gg(T95, T96)) → U9_gg(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_gg(T95, T96, T97, ordered39_out_gg(T96, T97)) → ordered39_out_gg(T95, .(T96, T97))
U17_ag(T17, T15, T16, ordered39_out_gg(T15, T16)) → ss1_out_ag(T17, .(T15, T16))

The argument filtering Pi contains the following mapping:
ss1_in_ag(x1, x2)  =  ss1_in_ag(x2)
[]  =  []
ss1_out_ag(x1, x2)  =  ss1_out_ag(x2)
.(x1, x2)  =  .(x1, x2)
U12_ag(x1, x2, x3, x4)  =  U12_ag(x2, x3, x4)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
U13_ag(x1, x2, x3, x4)  =  U13_ag(x2, x3, x4)
U14_ag(x1, x2, x3, x4)  =  U14_ag(x2, x3, x4)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
U15_ag(x1, x2, x3, x4)  =  U15_ag(x2, x3, x4)
U16_ag(x1, x2, x3, x4)  =  U16_ag(x2, x3, x4)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
perm38_out_ag(x1, x2)  =  perm38_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x2, x3, x4)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x2, x3, x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x2, x3, x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x2, x3, x4)
U7_ag(x1, x2, x3, x4)  =  U7_ag(x2, x3, x4)
U17_ag(x1, x2, x3, x4)  =  U17_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
ordered39_out_gg(x1, x2)  =  ordered39_out_gg(x1, x2)
U8_gg(x1, x2, x3, x4)  =  U8_gg(x1, x2, x3, x4)
less61_in_gg(x1, x2)  =  less61_in_gg(x1, x2)
0  =  0
less61_out_gg(x1, x2)  =  less61_out_gg(x1, x2)
s(x1)  =  s(x1)
U11_gg(x1, x2, x3)  =  U11_gg(x1, x2, x3)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
less69_out_gg(x1, x2)  =  less69_out_gg(x1, x2)
U10_gg(x1, x2, x3)  =  U10_gg(x1, x2, x3)
U9_gg(x1, x2, x3, x4)  =  U9_gg(x1, x2, x3, x4)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(79) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(80) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, app18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, app18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, app28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, app28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)

The TRS R consists of the following rules:

app18_in_agaa([], T28, X46, .(T28, X46)) → app18_out_agaa([], T28, X46, .(T28, X46))
app18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U1_agaa(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
app28_in_aaa([], T47, T47) → app28_out_aaa([], T47, T47)
app28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U2_aaa(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
U1_agaa(X66, X67, T33, X68, T35, app18_out_agaa(X67, T33, X68, T35)) → app18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U2_aaa(T54, T57, T58, X101, app28_out_aaa(T57, T58, X101)) → app28_out_aaa(.(T54, T57), T58, .(T54, X101))

The argument filtering Pi contains the following mapping:
[]  =  []
.(x1, x2)  =  .(x1, x2)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
app18_out_agaa(x1, x2, x3, x4)  =  app18_out_agaa(x2)
U1_agaa(x1, x2, x3, x4, x5, x6)  =  U1_agaa(x3, x6)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
app28_out_aaa(x1, x2, x3)  =  app28_out_aaa
U2_aaa(x1, x2, x3, x4, x5)  =  U2_aaa(x5)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(81) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(.(T68, T69)) → U4_AG(T68, T69, app18_in_agaa(T68))
U4_AG(T68, T69, app18_out_agaa(T68)) → U6_AG(T68, T69, app28_in_aaa)
U6_AG(T68, T69, app28_out_aaa) → PERM38_IN_AG(T69)

The TRS R consists of the following rules:

app18_in_agaa(T28) → app18_out_agaa(T28)
app18_in_agaa(T33) → U1_agaa(T33, app18_in_agaa(T33))
app28_in_aaaapp28_out_aaa
app28_in_aaaU2_aaa(app28_in_aaa)
U1_agaa(T33, app18_out_agaa(T33)) → app18_out_agaa(T33)
U2_aaa(app28_out_aaa) → app28_out_aaa

The set Q consists of the following terms:

app18_in_agaa(x0)
app28_in_aaa
U1_agaa(x0, x1)
U2_aaa(x0)

We have to consider all (P,Q,R)-chains.

(83) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U4_AG(T68, T69, app18_out_agaa(T68)) → U6_AG(T68, T69, app28_in_aaa)
    The graph contains the following edges 1 >= 1, 3 > 1, 2 >= 2

  • U6_AG(T68, T69, app28_out_aaa) → PERM38_IN_AG(T69)
    The graph contains the following edges 2 >= 1

  • PERM38_IN_AG(.(T68, T69)) → U4_AG(T68, T69, app18_in_agaa(T68))
    The graph contains the following edges 1 > 1, 1 > 2

(84) YES