(0) Obligation:

Clauses:

ss(Xs, Ys) :- ','(perm(Xs, Ys), ordered(Ys)).
perm([], []).
perm(Xs, .(X, Ys)) :- ','(app(X1s, .(X, X2s), Xs), ','(app(X1s, X2s, Zs), perm(Zs, Ys))).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
ordered([]).
ordered(.(X1, [])).
ordered(.(X, .(Y, Xs))) :- ','(less(X, s(Y)), ordered(.(Y, Xs))).
less(0, s(X2)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

ss(a,g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

app18(.(X66, X67), T33, X68, .(X66, T35)) :- app18(X67, T33, X68, T35).
app28(.(T54, T57), T58, .(T54, X101)) :- app28(T57, T58, X101).
perm38(T70, .(T68, T69)) :- app18(X120, T68, X121, T70).
perm38(T70, .(T68, T69)) :- ','(appc18(T73, T68, T74, T70), app28(T73, T74, X122)).
perm38(T70, .(T68, T69)) :- ','(appc18(T73, T68, T74, T70), ','(appc28(T73, T74, T79), perm38(T79, T69))).
ordered39(s(T111), .(T112, T97)) :- less69(T111, T112).
ordered39(T95, .(T96, T97)) :- ','(lessc61(T95, T96), ordered39(T96, T97)).
less69(s(T124), s(T125)) :- less69(T124, T125).
ss1(T17, .(T15, T16)) :- app18(X23, T15, X24, T17).
ss1(T17, .(T15, T16)) :- ','(appc18(T20, T15, T21, T17), app28(T20, T21, X25)).
ss1(T17, .(T15, T16)) :- ','(appc18(T20, T15, T21, T17), ','(appc28(T20, T21, T40), perm38(T40, T16))).
ss1(T17, .(T15, T16)) :- ','(appc18(T20, T15, T21, T17), ','(appc28(T20, T21, T40), ','(permc38(T40, T16), ordered39(T15, T16)))).

Clauses:

appc18([], T28, X46, .(T28, X46)).
appc18(.(X66, X67), T33, X68, .(X66, T35)) :- appc18(X67, T33, X68, T35).
appc28([], T47, T47).
appc28(.(T54, T57), T58, .(T54, X101)) :- appc28(T57, T58, X101).
permc38([], []).
permc38(T70, .(T68, T69)) :- ','(appc18(T73, T68, T74, T70), ','(appc28(T73, T74, T79), permc38(T79, T69))).
orderedc39(T88, []).
orderedc39(T95, .(T96, T97)) :- ','(lessc61(T95, T96), orderedc39(T96, T97)).
lessc69(0, s(T119)).
lessc69(s(T124), s(T125)) :- lessc69(T124, T125).
lessc61(0, T106).
lessc61(s(T111), T112) :- lessc69(T111, T112).

Afs:

ss1(x1, x2)  =  ss1(x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ss1_in: (f,b)
app18_in: (f,b,f,f)
appc18_in: (f,b,f,f)
app28_in: (f,f,f)
appc28_in: (f,f,f)
perm38_in: (f,b)
permc38_in: (f,b)
ordered39_in: (b,b)
less69_in: (b,b)
lessc61_in: (b,b)
lessc69_in: (b,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_AG(T17, .(T15, T16)) → U12_AG(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
SS1_IN_AG(T17, .(T15, T16)) → APP18_IN_AGAA(X23, T15, X24, T17)
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → U1_AGAA(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)
SS1_IN_AG(T17, .(T15, T16)) → U13_AG(T17, T15, T16, appc18_in_agaa(T20, T15, T21, T17))
U13_AG(T17, T15, T16, appc18_out_agaa(T20, T15, T21, T17)) → U14_AG(T17, T15, T16, app28_in_aaa(T20, T21, X25))
U13_AG(T17, T15, T16, appc18_out_agaa(T20, T15, T21, T17)) → APP28_IN_AAA(T20, T21, X25)
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → U2_AAA(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)
U13_AG(T17, T15, T16, appc18_out_agaa(T20, T15, T21, T17)) → U15_AG(T17, T15, T16, appc28_in_aaa(T20, T21, T40))
U15_AG(T17, T15, T16, appc28_out_aaa(T20, T21, T40)) → U16_AG(T17, T15, T16, perm38_in_ag(T40, T16))
U15_AG(T17, T15, T16, appc28_out_aaa(T20, T21, T40)) → PERM38_IN_AG(T40, T16)
PERM38_IN_AG(T70, .(T68, T69)) → U3_AG(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
PERM38_IN_AG(T70, .(T68, T69)) → APP18_IN_AGAA(X120, T68, X121, T70)
PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U5_AG(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U4_AG(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → APP28_IN_AAA(T73, T74, X122)
U4_AG(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U7_AG(T70, T68, T69, perm38_in_ag(T79, T69))
U6_AG(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)
U15_AG(T17, T15, T16, appc28_out_aaa(T20, T21, T40)) → U17_AG(T17, T15, T16, permc38_in_ag(T40, T16))
U17_AG(T17, T15, T16, permc38_out_ag(T40, T16)) → U18_AG(T17, T15, T16, ordered39_in_gg(T15, T16))
U17_AG(T17, T15, T16, permc38_out_ag(T40, T16)) → ORDERED39_IN_GG(T15, T16)
ORDERED39_IN_GG(s(T111), .(T112, T97)) → U8_GG(T111, T112, T97, less69_in_gg(T111, T112))
ORDERED39_IN_GG(s(T111), .(T112, T97)) → LESS69_IN_GG(T111, T112)
LESS69_IN_GG(s(T124), s(T125)) → U11_GG(T124, T125, less69_in_gg(T124, T125))
LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
ORDERED39_IN_GG(T95, .(T96, T97)) → U9_GG(T95, T96, T97, lessc61_in_gg(T95, T96))
U9_GG(T95, T96, T97, lessc61_out_gg(T95, T96)) → U10_GG(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_GG(T95, T96, T97, lessc61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

appc18_in_agaa([], T28, X46, .(T28, X46)) → appc18_out_agaa([], T28, X46, .(T28, X46))
appc18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U20_agaa(X66, X67, T33, X68, T35, appc18_in_agaa(X67, T33, X68, T35))
U20_agaa(X66, X67, T33, X68, T35, appc18_out_agaa(X67, T33, X68, T35)) → appc18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
appc28_in_aaa([], T47, T47) → appc28_out_aaa([], T47, T47)
appc28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U21_aaa(T54, T57, T58, X101, appc28_in_aaa(T57, T58, X101))
U21_aaa(T54, T57, T58, X101, appc28_out_aaa(T57, T58, X101)) → appc28_out_aaa(.(T54, T57), T58, .(T54, X101))
permc38_in_ag([], []) → permc38_out_ag([], [])
permc38_in_ag(T70, .(T68, T69)) → U22_ag(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U22_ag(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U23_ag(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U23_ag(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U24_ag(T70, T68, T69, permc38_in_ag(T79, T69))
U24_ag(T70, T68, T69, permc38_out_ag(T79, T69)) → permc38_out_ag(T70, .(T68, T69))
lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
appc18_in_agaa(x1, x2, x3, x4)  =  appc18_in_agaa(x2)
appc18_out_agaa(x1, x2, x3, x4)  =  appc18_out_agaa(x2)
U20_agaa(x1, x2, x3, x4, x5, x6)  =  U20_agaa(x3, x6)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
appc28_in_aaa(x1, x2, x3)  =  appc28_in_aaa
appc28_out_aaa(x1, x2, x3)  =  appc28_out_aaa
U21_aaa(x1, x2, x3, x4, x5)  =  U21_aaa(x5)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
permc38_in_ag(x1, x2)  =  permc38_in_ag(x2)
[]  =  []
permc38_out_ag(x1, x2)  =  permc38_out_ag(x2)
U22_ag(x1, x2, x3, x4)  =  U22_ag(x2, x3, x4)
U23_ag(x1, x2, x3, x4)  =  U23_ag(x2, x3, x4)
U24_ag(x1, x2, x3, x4)  =  U24_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
s(x1)  =  s(x1)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
lessc61_in_gg(x1, x2)  =  lessc61_in_gg(x1, x2)
0  =  0
lessc61_out_gg(x1, x2)  =  lessc61_out_gg(x1, x2)
U28_gg(x1, x2, x3)  =  U28_gg(x1, x2, x3)
lessc69_in_gg(x1, x2)  =  lessc69_in_gg(x1, x2)
lessc69_out_gg(x1, x2)  =  lessc69_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
SS1_IN_AG(x1, x2)  =  SS1_IN_AG(x2)
U12_AG(x1, x2, x3, x4)  =  U12_AG(x2, x3, x4)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)
U1_AGAA(x1, x2, x3, x4, x5, x6)  =  U1_AGAA(x3, x6)
U13_AG(x1, x2, x3, x4)  =  U13_AG(x2, x3, x4)
U14_AG(x1, x2, x3, x4)  =  U14_AG(x2, x3, x4)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA
U2_AAA(x1, x2, x3, x4, x5)  =  U2_AAA(x5)
U15_AG(x1, x2, x3, x4)  =  U15_AG(x2, x3, x4)
U16_AG(x1, x2, x3, x4)  =  U16_AG(x2, x3, x4)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x2, x3, x4)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
U5_AG(x1, x2, x3, x4)  =  U5_AG(x2, x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x2, x3, x4)
U7_AG(x1, x2, x3, x4)  =  U7_AG(x2, x3, x4)
U17_AG(x1, x2, x3, x4)  =  U17_AG(x2, x3, x4)
U18_AG(x1, x2, x3, x4)  =  U18_AG(x2, x3, x4)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x1, x2, x3, x4)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x1, x2, x3)
U9_GG(x1, x2, x3, x4)  =  U9_GG(x1, x2, x3, x4)
U10_GG(x1, x2, x3, x4)  =  U10_GG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_AG(T17, .(T15, T16)) → U12_AG(T17, T15, T16, app18_in_agaa(X23, T15, X24, T17))
SS1_IN_AG(T17, .(T15, T16)) → APP18_IN_AGAA(X23, T15, X24, T17)
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → U1_AGAA(X66, X67, T33, X68, T35, app18_in_agaa(X67, T33, X68, T35))
APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)
SS1_IN_AG(T17, .(T15, T16)) → U13_AG(T17, T15, T16, appc18_in_agaa(T20, T15, T21, T17))
U13_AG(T17, T15, T16, appc18_out_agaa(T20, T15, T21, T17)) → U14_AG(T17, T15, T16, app28_in_aaa(T20, T21, X25))
U13_AG(T17, T15, T16, appc18_out_agaa(T20, T15, T21, T17)) → APP28_IN_AAA(T20, T21, X25)
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → U2_AAA(T54, T57, T58, X101, app28_in_aaa(T57, T58, X101))
APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)
U13_AG(T17, T15, T16, appc18_out_agaa(T20, T15, T21, T17)) → U15_AG(T17, T15, T16, appc28_in_aaa(T20, T21, T40))
U15_AG(T17, T15, T16, appc28_out_aaa(T20, T21, T40)) → U16_AG(T17, T15, T16, perm38_in_ag(T40, T16))
U15_AG(T17, T15, T16, appc28_out_aaa(T20, T21, T40)) → PERM38_IN_AG(T40, T16)
PERM38_IN_AG(T70, .(T68, T69)) → U3_AG(T70, T68, T69, app18_in_agaa(X120, T68, X121, T70))
PERM38_IN_AG(T70, .(T68, T69)) → APP18_IN_AGAA(X120, T68, X121, T70)
PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U5_AG(T70, T68, T69, app28_in_aaa(T73, T74, X122))
U4_AG(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → APP28_IN_AAA(T73, T74, X122)
U4_AG(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U7_AG(T70, T68, T69, perm38_in_ag(T79, T69))
U6_AG(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)
U15_AG(T17, T15, T16, appc28_out_aaa(T20, T21, T40)) → U17_AG(T17, T15, T16, permc38_in_ag(T40, T16))
U17_AG(T17, T15, T16, permc38_out_ag(T40, T16)) → U18_AG(T17, T15, T16, ordered39_in_gg(T15, T16))
U17_AG(T17, T15, T16, permc38_out_ag(T40, T16)) → ORDERED39_IN_GG(T15, T16)
ORDERED39_IN_GG(s(T111), .(T112, T97)) → U8_GG(T111, T112, T97, less69_in_gg(T111, T112))
ORDERED39_IN_GG(s(T111), .(T112, T97)) → LESS69_IN_GG(T111, T112)
LESS69_IN_GG(s(T124), s(T125)) → U11_GG(T124, T125, less69_in_gg(T124, T125))
LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
ORDERED39_IN_GG(T95, .(T96, T97)) → U9_GG(T95, T96, T97, lessc61_in_gg(T95, T96))
U9_GG(T95, T96, T97, lessc61_out_gg(T95, T96)) → U10_GG(T95, T96, T97, ordered39_in_gg(T96, T97))
U9_GG(T95, T96, T97, lessc61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

appc18_in_agaa([], T28, X46, .(T28, X46)) → appc18_out_agaa([], T28, X46, .(T28, X46))
appc18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U20_agaa(X66, X67, T33, X68, T35, appc18_in_agaa(X67, T33, X68, T35))
U20_agaa(X66, X67, T33, X68, T35, appc18_out_agaa(X67, T33, X68, T35)) → appc18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
appc28_in_aaa([], T47, T47) → appc28_out_aaa([], T47, T47)
appc28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U21_aaa(T54, T57, T58, X101, appc28_in_aaa(T57, T58, X101))
U21_aaa(T54, T57, T58, X101, appc28_out_aaa(T57, T58, X101)) → appc28_out_aaa(.(T54, T57), T58, .(T54, X101))
permc38_in_ag([], []) → permc38_out_ag([], [])
permc38_in_ag(T70, .(T68, T69)) → U22_ag(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U22_ag(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U23_ag(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U23_ag(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U24_ag(T70, T68, T69, permc38_in_ag(T79, T69))
U24_ag(T70, T68, T69, permc38_out_ag(T79, T69)) → permc38_out_ag(T70, .(T68, T69))
lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
app18_in_agaa(x1, x2, x3, x4)  =  app18_in_agaa(x2)
appc18_in_agaa(x1, x2, x3, x4)  =  appc18_in_agaa(x2)
appc18_out_agaa(x1, x2, x3, x4)  =  appc18_out_agaa(x2)
U20_agaa(x1, x2, x3, x4, x5, x6)  =  U20_agaa(x3, x6)
app28_in_aaa(x1, x2, x3)  =  app28_in_aaa
appc28_in_aaa(x1, x2, x3)  =  appc28_in_aaa
appc28_out_aaa(x1, x2, x3)  =  appc28_out_aaa
U21_aaa(x1, x2, x3, x4, x5)  =  U21_aaa(x5)
perm38_in_ag(x1, x2)  =  perm38_in_ag(x2)
permc38_in_ag(x1, x2)  =  permc38_in_ag(x2)
[]  =  []
permc38_out_ag(x1, x2)  =  permc38_out_ag(x2)
U22_ag(x1, x2, x3, x4)  =  U22_ag(x2, x3, x4)
U23_ag(x1, x2, x3, x4)  =  U23_ag(x2, x3, x4)
U24_ag(x1, x2, x3, x4)  =  U24_ag(x2, x3, x4)
ordered39_in_gg(x1, x2)  =  ordered39_in_gg(x1, x2)
s(x1)  =  s(x1)
less69_in_gg(x1, x2)  =  less69_in_gg(x1, x2)
lessc61_in_gg(x1, x2)  =  lessc61_in_gg(x1, x2)
0  =  0
lessc61_out_gg(x1, x2)  =  lessc61_out_gg(x1, x2)
U28_gg(x1, x2, x3)  =  U28_gg(x1, x2, x3)
lessc69_in_gg(x1, x2)  =  lessc69_in_gg(x1, x2)
lessc69_out_gg(x1, x2)  =  lessc69_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
SS1_IN_AG(x1, x2)  =  SS1_IN_AG(x2)
U12_AG(x1, x2, x3, x4)  =  U12_AG(x2, x3, x4)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)
U1_AGAA(x1, x2, x3, x4, x5, x6)  =  U1_AGAA(x3, x6)
U13_AG(x1, x2, x3, x4)  =  U13_AG(x2, x3, x4)
U14_AG(x1, x2, x3, x4)  =  U14_AG(x2, x3, x4)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA
U2_AAA(x1, x2, x3, x4, x5)  =  U2_AAA(x5)
U15_AG(x1, x2, x3, x4)  =  U15_AG(x2, x3, x4)
U16_AG(x1, x2, x3, x4)  =  U16_AG(x2, x3, x4)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x2, x3, x4)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
U5_AG(x1, x2, x3, x4)  =  U5_AG(x2, x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x2, x3, x4)
U7_AG(x1, x2, x3, x4)  =  U7_AG(x2, x3, x4)
U17_AG(x1, x2, x3, x4)  =  U17_AG(x2, x3, x4)
U18_AG(x1, x2, x3, x4)  =  U18_AG(x2, x3, x4)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U8_GG(x1, x2, x3, x4)  =  U8_GG(x1, x2, x3, x4)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)
U11_GG(x1, x2, x3)  =  U11_GG(x1, x2, x3)
U9_GG(x1, x2, x3, x4)  =  U9_GG(x1, x2, x3, x4)
U10_GG(x1, x2, x3, x4)  =  U10_GG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 22 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

The TRS R consists of the following rules:

appc18_in_agaa([], T28, X46, .(T28, X46)) → appc18_out_agaa([], T28, X46, .(T28, X46))
appc18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U20_agaa(X66, X67, T33, X68, T35, appc18_in_agaa(X67, T33, X68, T35))
U20_agaa(X66, X67, T33, X68, T35, appc18_out_agaa(X67, T33, X68, T35)) → appc18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
appc28_in_aaa([], T47, T47) → appc28_out_aaa([], T47, T47)
appc28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U21_aaa(T54, T57, T58, X101, appc28_in_aaa(T57, T58, X101))
U21_aaa(T54, T57, T58, X101, appc28_out_aaa(T57, T58, X101)) → appc28_out_aaa(.(T54, T57), T58, .(T54, X101))
permc38_in_ag([], []) → permc38_out_ag([], [])
permc38_in_ag(T70, .(T68, T69)) → U22_ag(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U22_ag(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U23_ag(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U23_ag(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U24_ag(T70, T68, T69, permc38_in_ag(T79, T69))
U24_ag(T70, T68, T69, permc38_out_ag(T79, T69)) → permc38_out_ag(T70, .(T68, T69))
lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appc18_in_agaa(x1, x2, x3, x4)  =  appc18_in_agaa(x2)
appc18_out_agaa(x1, x2, x3, x4)  =  appc18_out_agaa(x2)
U20_agaa(x1, x2, x3, x4, x5, x6)  =  U20_agaa(x3, x6)
appc28_in_aaa(x1, x2, x3)  =  appc28_in_aaa
appc28_out_aaa(x1, x2, x3)  =  appc28_out_aaa
U21_aaa(x1, x2, x3, x4, x5)  =  U21_aaa(x5)
permc38_in_ag(x1, x2)  =  permc38_in_ag(x2)
[]  =  []
permc38_out_ag(x1, x2)  =  permc38_out_ag(x2)
U22_ag(x1, x2, x3, x4)  =  U22_ag(x2, x3, x4)
U23_ag(x1, x2, x3, x4)  =  U23_ag(x2, x3, x4)
U24_ag(x1, x2, x3, x4)  =  U24_ag(x2, x3, x4)
s(x1)  =  s(x1)
lessc61_in_gg(x1, x2)  =  lessc61_in_gg(x1, x2)
0  =  0
lessc61_out_gg(x1, x2)  =  lessc61_out_gg(x1, x2)
U28_gg(x1, x2, x3)  =  U28_gg(x1, x2, x3)
lessc69_in_gg(x1, x2)  =  lessc69_in_gg(x1, x2)
lessc69_out_gg(x1, x2)  =  lessc69_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
LESS69_IN_GG(x1, x2)  =  LESS69_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS69_IN_GG(s(T124), s(T125)) → LESS69_IN_GG(T124, T125)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDERED39_IN_GG(T95, .(T96, T97)) → U9_GG(T95, T96, T97, lessc61_in_gg(T95, T96))
U9_GG(T95, T96, T97, lessc61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

appc18_in_agaa([], T28, X46, .(T28, X46)) → appc18_out_agaa([], T28, X46, .(T28, X46))
appc18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U20_agaa(X66, X67, T33, X68, T35, appc18_in_agaa(X67, T33, X68, T35))
U20_agaa(X66, X67, T33, X68, T35, appc18_out_agaa(X67, T33, X68, T35)) → appc18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
appc28_in_aaa([], T47, T47) → appc28_out_aaa([], T47, T47)
appc28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U21_aaa(T54, T57, T58, X101, appc28_in_aaa(T57, T58, X101))
U21_aaa(T54, T57, T58, X101, appc28_out_aaa(T57, T58, X101)) → appc28_out_aaa(.(T54, T57), T58, .(T54, X101))
permc38_in_ag([], []) → permc38_out_ag([], [])
permc38_in_ag(T70, .(T68, T69)) → U22_ag(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U22_ag(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U23_ag(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U23_ag(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U24_ag(T70, T68, T69, permc38_in_ag(T79, T69))
U24_ag(T70, T68, T69, permc38_out_ag(T79, T69)) → permc38_out_ag(T70, .(T68, T69))
lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appc18_in_agaa(x1, x2, x3, x4)  =  appc18_in_agaa(x2)
appc18_out_agaa(x1, x2, x3, x4)  =  appc18_out_agaa(x2)
U20_agaa(x1, x2, x3, x4, x5, x6)  =  U20_agaa(x3, x6)
appc28_in_aaa(x1, x2, x3)  =  appc28_in_aaa
appc28_out_aaa(x1, x2, x3)  =  appc28_out_aaa
U21_aaa(x1, x2, x3, x4, x5)  =  U21_aaa(x5)
permc38_in_ag(x1, x2)  =  permc38_in_ag(x2)
[]  =  []
permc38_out_ag(x1, x2)  =  permc38_out_ag(x2)
U22_ag(x1, x2, x3, x4)  =  U22_ag(x2, x3, x4)
U23_ag(x1, x2, x3, x4)  =  U23_ag(x2, x3, x4)
U24_ag(x1, x2, x3, x4)  =  U24_ag(x2, x3, x4)
s(x1)  =  s(x1)
lessc61_in_gg(x1, x2)  =  lessc61_in_gg(x1, x2)
0  =  0
lessc61_out_gg(x1, x2)  =  lessc61_out_gg(x1, x2)
U28_gg(x1, x2, x3)  =  U28_gg(x1, x2, x3)
lessc69_in_gg(x1, x2)  =  lessc69_in_gg(x1, x2)
lessc69_out_gg(x1, x2)  =  lessc69_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
ORDERED39_IN_GG(x1, x2)  =  ORDERED39_IN_GG(x1, x2)
U9_GG(x1, x2, x3, x4)  =  U9_GG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDERED39_IN_GG(T95, .(T96, T97)) → U9_GG(T95, T96, T97, lessc61_in_gg(T95, T96))
U9_GG(T95, T96, T97, lessc61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ORDERED39_IN_GG(T95, .(T96, T97)) → U9_GG(T95, T96, T97, lessc61_in_gg(T95, T96))
U9_GG(T95, T96, T97, lessc61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)

The TRS R consists of the following rules:

lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))

The set Q consists of the following terms:

lessc61_in_gg(x0, x1)
U28_gg(x0, x1, x2)
lessc69_in_gg(x0, x1)
U27_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U9_GG(T95, T96, T97, lessc61_out_gg(T95, T96)) → ORDERED39_IN_GG(T96, T97)
    The graph contains the following edges 2 >= 1, 4 > 1, 3 >= 2

  • ORDERED39_IN_GG(T95, .(T96, T97)) → U9_GG(T95, T96, T97, lessc61_in_gg(T95, T96))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)

The TRS R consists of the following rules:

appc18_in_agaa([], T28, X46, .(T28, X46)) → appc18_out_agaa([], T28, X46, .(T28, X46))
appc18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U20_agaa(X66, X67, T33, X68, T35, appc18_in_agaa(X67, T33, X68, T35))
U20_agaa(X66, X67, T33, X68, T35, appc18_out_agaa(X67, T33, X68, T35)) → appc18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
appc28_in_aaa([], T47, T47) → appc28_out_aaa([], T47, T47)
appc28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U21_aaa(T54, T57, T58, X101, appc28_in_aaa(T57, T58, X101))
U21_aaa(T54, T57, T58, X101, appc28_out_aaa(T57, T58, X101)) → appc28_out_aaa(.(T54, T57), T58, .(T54, X101))
permc38_in_ag([], []) → permc38_out_ag([], [])
permc38_in_ag(T70, .(T68, T69)) → U22_ag(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U22_ag(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U23_ag(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U23_ag(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U24_ag(T70, T68, T69, permc38_in_ag(T79, T69))
U24_ag(T70, T68, T69, permc38_out_ag(T79, T69)) → permc38_out_ag(T70, .(T68, T69))
lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appc18_in_agaa(x1, x2, x3, x4)  =  appc18_in_agaa(x2)
appc18_out_agaa(x1, x2, x3, x4)  =  appc18_out_agaa(x2)
U20_agaa(x1, x2, x3, x4, x5, x6)  =  U20_agaa(x3, x6)
appc28_in_aaa(x1, x2, x3)  =  appc28_in_aaa
appc28_out_aaa(x1, x2, x3)  =  appc28_out_aaa
U21_aaa(x1, x2, x3, x4, x5)  =  U21_aaa(x5)
permc38_in_ag(x1, x2)  =  permc38_in_ag(x2)
[]  =  []
permc38_out_ag(x1, x2)  =  permc38_out_ag(x2)
U22_ag(x1, x2, x3, x4)  =  U22_ag(x2, x3, x4)
U23_ag(x1, x2, x3, x4)  =  U23_ag(x2, x3, x4)
U24_ag(x1, x2, x3, x4)  =  U24_ag(x2, x3, x4)
s(x1)  =  s(x1)
lessc61_in_gg(x1, x2)  =  lessc61_in_gg(x1, x2)
0  =  0
lessc61_out_gg(x1, x2)  =  lessc61_out_gg(x1, x2)
U28_gg(x1, x2, x3)  =  U28_gg(x1, x2, x3)
lessc69_in_gg(x1, x2)  =  lessc69_in_gg(x1, x2)
lessc69_out_gg(x1, x2)  =  lessc69_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_AAA(.(T54, T57), T58, .(T54, X101)) → APP28_IN_AAA(T57, T58, X101)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP28_IN_AAA(x1, x2, x3)  =  APP28_IN_AAA

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP28_IN_AAAAPP28_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP28_IN_AAA evaluates to t =APP28_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP28_IN_AAA to APP28_IN_AAA.



(27) NO

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)

The TRS R consists of the following rules:

appc18_in_agaa([], T28, X46, .(T28, X46)) → appc18_out_agaa([], T28, X46, .(T28, X46))
appc18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U20_agaa(X66, X67, T33, X68, T35, appc18_in_agaa(X67, T33, X68, T35))
U20_agaa(X66, X67, T33, X68, T35, appc18_out_agaa(X67, T33, X68, T35)) → appc18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
appc28_in_aaa([], T47, T47) → appc28_out_aaa([], T47, T47)
appc28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U21_aaa(T54, T57, T58, X101, appc28_in_aaa(T57, T58, X101))
U21_aaa(T54, T57, T58, X101, appc28_out_aaa(T57, T58, X101)) → appc28_out_aaa(.(T54, T57), T58, .(T54, X101))
permc38_in_ag([], []) → permc38_out_ag([], [])
permc38_in_ag(T70, .(T68, T69)) → U22_ag(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U22_ag(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U23_ag(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U23_ag(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U24_ag(T70, T68, T69, permc38_in_ag(T79, T69))
U24_ag(T70, T68, T69, permc38_out_ag(T79, T69)) → permc38_out_ag(T70, .(T68, T69))
lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appc18_in_agaa(x1, x2, x3, x4)  =  appc18_in_agaa(x2)
appc18_out_agaa(x1, x2, x3, x4)  =  appc18_out_agaa(x2)
U20_agaa(x1, x2, x3, x4, x5, x6)  =  U20_agaa(x3, x6)
appc28_in_aaa(x1, x2, x3)  =  appc28_in_aaa
appc28_out_aaa(x1, x2, x3)  =  appc28_out_aaa
U21_aaa(x1, x2, x3, x4, x5)  =  U21_aaa(x5)
permc38_in_ag(x1, x2)  =  permc38_in_ag(x2)
[]  =  []
permc38_out_ag(x1, x2)  =  permc38_out_ag(x2)
U22_ag(x1, x2, x3, x4)  =  U22_ag(x2, x3, x4)
U23_ag(x1, x2, x3, x4)  =  U23_ag(x2, x3, x4)
U24_ag(x1, x2, x3, x4)  =  U24_ag(x2, x3, x4)
s(x1)  =  s(x1)
lessc61_in_gg(x1, x2)  =  lessc61_in_gg(x1, x2)
0  =  0
lessc61_out_gg(x1, x2)  =  lessc61_out_gg(x1, x2)
U28_gg(x1, x2, x3)  =  U28_gg(x1, x2, x3)
lessc69_in_gg(x1, x2)  =  lessc69_in_gg(x1, x2)
lessc69_out_gg(x1, x2)  =  lessc69_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(.(X66, X67), T33, X68, .(X66, T35)) → APP18_IN_AGAA(X67, T33, X68, T35)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP18_IN_AGAA(x1, x2, x3, x4)  =  APP18_IN_AGAA(x2)

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP18_IN_AGAA(T33) → APP18_IN_AGAA(T33)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP18_IN_AGAA(T33) evaluates to t =APP18_IN_AGAA(T33)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP18_IN_AGAA(T33) to APP18_IN_AGAA(T33).



(34) NO

(35) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)

The TRS R consists of the following rules:

appc18_in_agaa([], T28, X46, .(T28, X46)) → appc18_out_agaa([], T28, X46, .(T28, X46))
appc18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U20_agaa(X66, X67, T33, X68, T35, appc18_in_agaa(X67, T33, X68, T35))
U20_agaa(X66, X67, T33, X68, T35, appc18_out_agaa(X67, T33, X68, T35)) → appc18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
appc28_in_aaa([], T47, T47) → appc28_out_aaa([], T47, T47)
appc28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U21_aaa(T54, T57, T58, X101, appc28_in_aaa(T57, T58, X101))
U21_aaa(T54, T57, T58, X101, appc28_out_aaa(T57, T58, X101)) → appc28_out_aaa(.(T54, T57), T58, .(T54, X101))
permc38_in_ag([], []) → permc38_out_ag([], [])
permc38_in_ag(T70, .(T68, T69)) → U22_ag(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U22_ag(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U23_ag(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U23_ag(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → U24_ag(T70, T68, T69, permc38_in_ag(T79, T69))
U24_ag(T70, T68, T69, permc38_out_ag(T79, T69)) → permc38_out_ag(T70, .(T68, T69))
lessc61_in_gg(0, T106) → lessc61_out_gg(0, T106)
lessc61_in_gg(s(T111), T112) → U28_gg(T111, T112, lessc69_in_gg(T111, T112))
lessc69_in_gg(0, s(T119)) → lessc69_out_gg(0, s(T119))
lessc69_in_gg(s(T124), s(T125)) → U27_gg(T124, T125, lessc69_in_gg(T124, T125))
U27_gg(T124, T125, lessc69_out_gg(T124, T125)) → lessc69_out_gg(s(T124), s(T125))
U28_gg(T111, T112, lessc69_out_gg(T111, T112)) → lessc61_out_gg(s(T111), T112)

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appc18_in_agaa(x1, x2, x3, x4)  =  appc18_in_agaa(x2)
appc18_out_agaa(x1, x2, x3, x4)  =  appc18_out_agaa(x2)
U20_agaa(x1, x2, x3, x4, x5, x6)  =  U20_agaa(x3, x6)
appc28_in_aaa(x1, x2, x3)  =  appc28_in_aaa
appc28_out_aaa(x1, x2, x3)  =  appc28_out_aaa
U21_aaa(x1, x2, x3, x4, x5)  =  U21_aaa(x5)
permc38_in_ag(x1, x2)  =  permc38_in_ag(x2)
[]  =  []
permc38_out_ag(x1, x2)  =  permc38_out_ag(x2)
U22_ag(x1, x2, x3, x4)  =  U22_ag(x2, x3, x4)
U23_ag(x1, x2, x3, x4)  =  U23_ag(x2, x3, x4)
U24_ag(x1, x2, x3, x4)  =  U24_ag(x2, x3, x4)
s(x1)  =  s(x1)
lessc61_in_gg(x1, x2)  =  lessc61_in_gg(x1, x2)
0  =  0
lessc61_out_gg(x1, x2)  =  lessc61_out_gg(x1, x2)
U28_gg(x1, x2, x3)  =  U28_gg(x1, x2, x3)
lessc69_in_gg(x1, x2)  =  lessc69_in_gg(x1, x2)
lessc69_out_gg(x1, x2)  =  lessc69_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(36) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(T70, .(T68, T69)) → U4_AG(T70, T68, T69, appc18_in_agaa(T73, T68, T74, T70))
U4_AG(T70, T68, T69, appc18_out_agaa(T73, T68, T74, T70)) → U6_AG(T70, T68, T69, appc28_in_aaa(T73, T74, T79))
U6_AG(T70, T68, T69, appc28_out_aaa(T73, T74, T79)) → PERM38_IN_AG(T79, T69)

The TRS R consists of the following rules:

appc18_in_agaa([], T28, X46, .(T28, X46)) → appc18_out_agaa([], T28, X46, .(T28, X46))
appc18_in_agaa(.(X66, X67), T33, X68, .(X66, T35)) → U20_agaa(X66, X67, T33, X68, T35, appc18_in_agaa(X67, T33, X68, T35))
appc28_in_aaa([], T47, T47) → appc28_out_aaa([], T47, T47)
appc28_in_aaa(.(T54, T57), T58, .(T54, X101)) → U21_aaa(T54, T57, T58, X101, appc28_in_aaa(T57, T58, X101))
U20_agaa(X66, X67, T33, X68, T35, appc18_out_agaa(X67, T33, X68, T35)) → appc18_out_agaa(.(X66, X67), T33, X68, .(X66, T35))
U21_aaa(T54, T57, T58, X101, appc28_out_aaa(T57, T58, X101)) → appc28_out_aaa(.(T54, T57), T58, .(T54, X101))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
appc18_in_agaa(x1, x2, x3, x4)  =  appc18_in_agaa(x2)
appc18_out_agaa(x1, x2, x3, x4)  =  appc18_out_agaa(x2)
U20_agaa(x1, x2, x3, x4, x5, x6)  =  U20_agaa(x3, x6)
appc28_in_aaa(x1, x2, x3)  =  appc28_in_aaa
appc28_out_aaa(x1, x2, x3)  =  appc28_out_aaa
U21_aaa(x1, x2, x3, x4, x5)  =  U21_aaa(x5)
[]  =  []
PERM38_IN_AG(x1, x2)  =  PERM38_IN_AG(x2)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x2, x3, x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(38) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PERM38_IN_AG(.(T68, T69)) → U4_AG(T68, T69, appc18_in_agaa(T68))
U4_AG(T68, T69, appc18_out_agaa(T68)) → U6_AG(T68, T69, appc28_in_aaa)
U6_AG(T68, T69, appc28_out_aaa) → PERM38_IN_AG(T69)

The TRS R consists of the following rules:

appc18_in_agaa(T28) → appc18_out_agaa(T28)
appc18_in_agaa(T33) → U20_agaa(T33, appc18_in_agaa(T33))
appc28_in_aaaappc28_out_aaa
appc28_in_aaaU21_aaa(appc28_in_aaa)
U20_agaa(T33, appc18_out_agaa(T33)) → appc18_out_agaa(T33)
U21_aaa(appc28_out_aaa) → appc28_out_aaa

The set Q consists of the following terms:

appc18_in_agaa(x0)
appc28_in_aaa
U20_agaa(x0, x1)
U21_aaa(x0)

We have to consider all (P,Q,R)-chains.

(40) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U4_AG(T68, T69, appc18_out_agaa(T68)) → U6_AG(T68, T69, appc28_in_aaa)
    The graph contains the following edges 1 >= 1, 3 > 1, 2 >= 2

  • U6_AG(T68, T69, appc28_out_aaa) → PERM38_IN_AG(T69)
    The graph contains the following edges 2 >= 1

  • PERM38_IN_AG(.(T68, T69)) → U4_AG(T68, T69, appc18_in_agaa(T68))
    The graph contains the following edges 1 > 1, 1 > 2

(41) YES