0 Prolog
↳1 PrologToPiTRSProof (⇐)
↳2 PiTRS
↳3 DependencyPairsProof (⇔)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 PiDP
↳8 UsableRulesProof (⇔)
↳9 PiDP
↳10 PiDPToQDPProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 PiDP
↳15 UsableRulesProof (⇔)
↳16 PiDP
↳17 PiDPToQDPProof (⇔)
↳18 QDP
↳19 MRRProof (⇔)
↳20 QDP
↳21 DependencyGraphProof (⇔)
↳22 TRUE
↳23 PiDP
↳24 UsableRulesProof (⇔)
↳25 PiDP
↳26 PiDPToQDPProof (⇐)
↳27 QDP
↳28 NonTerminationProof (⇔)
↳29 FALSE
↳30 PiDP
↳31 UsableRulesProof (⇔)
↳32 PiDP
↳33 PiDPToQDPProof (⇐)
↳34 QDP
↳35 QDPSizeChangeProof (⇔)
↳36 TRUE
↳37 PrologToPiTRSProof (⇐)
↳38 PiTRS
↳39 DependencyPairsProof (⇔)
↳40 PiDP
↳41 DependencyGraphProof (⇔)
↳42 AND
↳43 PiDP
↳44 UsableRulesProof (⇔)
↳45 PiDP
↳46 PiDPToQDPProof (⇔)
↳47 QDP
↳48 QDPSizeChangeProof (⇔)
↳49 TRUE
↳50 PiDP
↳51 UsableRulesProof (⇔)
↳52 PiDP
↳53 PiDPToQDPProof (⇐)
↳54 QDP
↳55 UsableRulesReductionPairsProof (⇔)
↳56 QDP
↳57 MRRProof (⇔)
↳58 QDP
↳59 DependencyGraphProof (⇔)
↳60 TRUE
↳61 PiDP
↳62 UsableRulesProof (⇔)
↳63 PiDP
↳64 PiDPToQDPProof (⇐)
↳65 QDP
↳66 NonTerminationProof (⇔)
↳67 FALSE
↳68 PiDP
↳69 UsableRulesProof (⇔)
↳70 PiDP
↳71 PiDPToQDPProof (⇐)
↳72 QDP
↳73 QDPSizeChangeProof (⇔)
↳74 TRUE
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
SS_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, perm_in_ag(Xs, Ys))
SS_IN_AG(Xs, Ys) → PERM_IN_AG(Xs, Ys)
PERM_IN_AG(Xs, .(X, Ys)) → U3_AG(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
PERM_IN_AG(Xs, .(X, Ys)) → APP_IN_AAA(X1s, .(X, X2s), Xs)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → U6_AAA(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_AG(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → APP_IN_AAA(X1s, X2s, Zs)
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_AG(Xs, X, Ys, perm_in_ag(Zs, Ys))
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → PERM_IN_AG(Zs, Ys)
U1_AG(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_AG(Xs, Ys, ordered_in_g(Ys))
U1_AG(Xs, Ys, perm_out_ag(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
SS_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, perm_in_ag(Xs, Ys))
SS_IN_AG(Xs, Ys) → PERM_IN_AG(Xs, Ys)
PERM_IN_AG(Xs, .(X, Ys)) → U3_AG(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
PERM_IN_AG(Xs, .(X, Ys)) → APP_IN_AAA(X1s, .(X, X2s), Xs)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → U6_AAA(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_AG(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → APP_IN_AAA(X1s, X2s, Zs)
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_AG(Xs, X, Ys, perm_in_ag(Zs, Ys))
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → PERM_IN_AG(Zs, Ys)
U1_AG(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_AG(Xs, Ys, ordered_in_g(Ys))
U1_AG(Xs, Ys, perm_out_ag(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
less_in_gg(x0, x1)
U9_gg(x0, x1, x2)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
POL(.(x1, x2)) = 1 + 2·x1 + x2
POL(0) = 0
POL(ORDERED_IN_G(x1)) = 2·x1
POL(U7_G(x1, x2, x3, x4)) = 2 + x1 + 2·x2 + 2·x3 + x4
POL(U9_gg(x1, x2, x3)) = 2·x1 + x2 + x3
POL(less_in_gg(x1, x2)) = 2·x1 + x2
POL(less_out_gg(x1, x2)) = x1 + x2
POL(s(x1)) = 2·x1
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
less_in_gg(x0, x1)
U9_gg(x0, x1, x2)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
APP_IN_AAA → APP_IN_AAA
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_AG(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → PERM_IN_AG(Zs, Ys)
PERM_IN_AG(Xs, .(X, Ys)) → U3_AG(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_AG(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → PERM_IN_AG(Zs, Ys)
PERM_IN_AG(Xs, .(X, Ys)) → U3_AG(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_AG(X, Ys, app_out_aaa) → U4_AG(X, Ys, app_in_aaa)
U4_AG(X, Ys, app_out_aaa) → PERM_IN_AG(Ys)
PERM_IN_AG(.(X, Ys)) → U3_AG(X, Ys, app_in_aaa)
app_in_aaa → app_out_aaa
app_in_aaa → U6_aaa(app_in_aaa)
U6_aaa(app_out_aaa) → app_out_aaa
app_in_aaa
U6_aaa(x0)
From the DPs we obtained the following set of size-change graphs:
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
SS_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, perm_in_ag(Xs, Ys))
SS_IN_AG(Xs, Ys) → PERM_IN_AG(Xs, Ys)
PERM_IN_AG(Xs, .(X, Ys)) → U3_AG(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
PERM_IN_AG(Xs, .(X, Ys)) → APP_IN_AAA(X1s, .(X, X2s), Xs)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → U6_AAA(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_AG(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → APP_IN_AAA(X1s, X2s, Zs)
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_AG(Xs, X, Ys, perm_in_ag(Zs, Ys))
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → PERM_IN_AG(Zs, Ys)
U1_AG(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_AG(Xs, Ys, ordered_in_g(Ys))
U1_AG(Xs, Ys, perm_out_ag(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
SS_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, perm_in_ag(Xs, Ys))
SS_IN_AG(Xs, Ys) → PERM_IN_AG(Xs, Ys)
PERM_IN_AG(Xs, .(X, Ys)) → U3_AG(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
PERM_IN_AG(Xs, .(X, Ys)) → APP_IN_AAA(X1s, .(X, X2s), Xs)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → U6_AAA(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_AG(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → APP_IN_AAA(X1s, X2s, Zs)
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_AG(Xs, X, Ys, perm_in_ag(Zs, Ys))
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → PERM_IN_AG(Zs, Ys)
U1_AG(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_AG(Xs, Ys, ordered_in_g(Ys))
U1_AG(Xs, Ys, perm_out_ag(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg
less_in_gg(s(X), s(Y)) → U9_gg(less_in_gg(X, Y))
U9_gg(less_out_gg) → less_out_gg
less_in_gg(x0, x1)
U9_gg(x0)
Used ordering: POLO with Polynomial interpretation [POLO]:
less_in_gg(0, s(X2)) → less_out_gg
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(0) = 2
POL(ORDERED_IN_G(x1)) = 1 + x1
POL(U7_G(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U9_gg(x1)) = x1
POL(less_in_gg(x1, x2)) = x1 + x2
POL(less_out_gg) = 0
POL(s(x1)) = x1
U7_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(s(X), s(Y)) → U9_gg(less_in_gg(X, Y))
U9_gg(less_out_gg) → less_out_gg
less_in_gg(x0, x1)
U9_gg(x0)
U7_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
U9_gg(less_out_gg) → less_out_gg
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(ORDERED_IN_G(x1)) = 1 + x1
POL(U7_G(x1, x2, x3)) = 2·x1 + 2·x2 + x3
POL(U9_gg(x1)) = 2 + x1
POL(less_in_gg(x1, x2)) = x1 + x2
POL(less_out_gg) = 2
POL(s(x1)) = 1 + x1
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(s(X), s(Y)) → U9_gg(less_in_gg(X, Y))
less_in_gg(x0, x1)
U9_gg(x0)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
APP_IN_AAA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAA(Xs, Ys, Zs)
APP_IN_AAA → APP_IN_AAA
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_AG(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → PERM_IN_AG(Zs, Ys)
PERM_IN_AG(Xs, .(X, Ys)) → U3_AG(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
ss_in_ag(Xs, Ys) → U1_ag(Xs, Ys, perm_in_ag(Xs, Ys))
perm_in_ag([], []) → perm_out_ag([], [])
perm_in_ag(Xs, .(X, Ys)) → U3_ag(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_ag(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_ag(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_ag(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → U5_ag(Xs, X, Ys, perm_in_ag(Zs, Ys))
U5_ag(Xs, X, Ys, perm_out_ag(Zs, Ys)) → perm_out_ag(Xs, .(X, Ys))
U1_ag(Xs, Ys, perm_out_ag(Xs, Ys)) → U2_ag(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_ag(Xs, Ys, ordered_out_g(Ys)) → ss_out_ag(Xs, Ys)
U3_AG(Xs, X, Ys, app_out_aaa(X1s, .(X, X2s), Xs)) → U4_AG(Xs, X, Ys, app_in_aaa(X1s, X2s, Zs))
U4_AG(Xs, X, Ys, app_out_aaa(X1s, X2s, Zs)) → PERM_IN_AG(Zs, Ys)
PERM_IN_AG(Xs, .(X, Ys)) → U3_AG(Xs, X, Ys, app_in_aaa(X1s, .(X, X2s), Xs))
app_in_aaa([], X, X) → app_out_aaa([], X, X)
app_in_aaa(.(X, Xs), Ys, .(X, Zs)) → U6_aaa(X, Xs, Ys, Zs, app_in_aaa(Xs, Ys, Zs))
U6_aaa(X, Xs, Ys, Zs, app_out_aaa(Xs, Ys, Zs)) → app_out_aaa(.(X, Xs), Ys, .(X, Zs))
U3_AG(Ys, app_out_aaa) → U4_AG(Ys, app_in_aaa)
U4_AG(Ys, app_out_aaa) → PERM_IN_AG(Ys)
PERM_IN_AG(.(X, Ys)) → U3_AG(Ys, app_in_aaa)
app_in_aaa → app_out_aaa
app_in_aaa → U6_aaa(app_in_aaa)
U6_aaa(app_out_aaa) → app_out_aaa
app_in_aaa
U6_aaa(x0)
From the DPs we obtained the following set of size-change graphs: