(0) Obligation:

Clauses:

ss(Xs, Ys) :- ','(perm(Xs, Ys), ordered(Ys)).
perm([], []).
perm(Xs, .(X, Ys)) :- ','(app(X1s, .(X, X2s), Xs), ','(app(X1s, X2s, Zs), perm(Zs, Ys))).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
ordered([]).
ordered(.(X1, [])).
ordered(.(X, .(Y, Xs))) :- ','(less(X, s(Y)), ordered(.(Y, Xs))).
less(0, s(X2)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

ss(g,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

app18([], T31, X46, .(T31, X46)).
app18(.(X66, X67), T38, X68, .(X66, T37)) :- app18(X67, T38, X68, T37).
app28([], T50, T50).
app28(.(T57, T58), T59, .(T57, X101)) :- app28(T58, T59, X101).
perm38([], []).
perm38(T69, .(T72, T73)) :- app18(X120, T72, X121, T69).
perm38(T69, .(T72, T78)) :- ','(app18(T76, T72, T77, T69), app28(T76, T77, X122)).
perm38(T69, .(T72, T78)) :- ','(app18(T76, T72, T77, T69), ','(app28(T76, T77, T83), perm38(T83, T78))).
ordered39(T92, []).
ordered39(T99, .(T100, T101)) :- less61(T99, T100).
ordered39(T99, .(T100, T101)) :- ','(less61(T99, T100), ordered39(T100, T101)).
less69(0, s(T123)).
less69(s(T128), s(T129)) :- less69(T128, T129).
less61(0, T110).
less61(s(T115), T116) :- less69(T115, T116).
ss1([], []).
ss1(T14, .(T17, T18)) :- app18(X23, T17, X24, T14).
ss1(T14, .(T24, T23)) :- ','(app18(T21, T24, T22, T14), app28(T21, T22, X25)).
ss1(T14, .(T24, T23)) :- ','(app18(T21, T24, T22, T14), ','(app28(T21, T22, T43), perm38(T43, T23))).
ss1(T14, .(T24, T62)) :- ','(app18(T21, T24, T22, T14), ','(app28(T21, T22, T43), ','(perm38(T43, T62), ordered39(T24, T62)))).

Queries:

ss1(g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ss1_in: (b,f)
app18_in: (f,f,f,b)
app28_in: (b,b,f)
perm38_in: (b,f)
ordered39_in: (b,f) (f,f)
less61_in: (b,f) (f,f)
less69_in: (b,f) (f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_GA(T14, .(T17, T18)) → U12_GA(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
SS1_IN_GA(T14, .(T17, T18)) → APP18_IN_AAAG(X23, T17, X24, T14)
APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → U1_AAAG(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → APP18_IN_AAAG(X67, T38, X68, T37)
SS1_IN_GA(T14, .(T24, T23)) → U13_GA(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_GA(T14, T24, T23, app28_in_gga(T21, T22, X25))
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → APP28_IN_GGA(T21, T22, X25)
APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → U2_GGA(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → APP28_IN_GGA(T58, T59, X101)
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_GA(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_GA(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_GA(T14, T24, T23, perm38_in_ga(T43, T23))
U15_GA(T14, T24, T23, app28_out_gga(T21, T22, T43)) → PERM38_IN_GA(T43, T23)
PERM38_IN_GA(T69, .(T72, T73)) → U3_GA(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
PERM38_IN_GA(T69, .(T72, T73)) → APP18_IN_AAAG(X120, T72, X121, T69)
PERM38_IN_GA(T69, .(T72, T78)) → U4_GA(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_GA(T69, T72, T78, app28_in_gga(T76, T77, X122))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → APP28_IN_GGA(T76, T77, X122)
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_GA(T69, T72, T78, perm38_in_ga(T83, T78))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83, T78)
SS1_IN_GA(T14, .(T24, T62)) → U17_GA(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_GA(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_GA(T14, T24, T62, app28_in_gga(T21, T22, T43))
U17_GA(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → APP28_IN_GGA(T21, T22, T43)
U18_GA(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_GA(T14, T24, T62, perm38_in_ga(T43, T62))
U18_GA(T14, T24, T62, app28_out_gga(T21, T22, T43)) → PERM38_IN_GA(T43, T62)
U19_GA(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_GA(T14, T24, T62, ordered39_in_ga(T24, T62))
U19_GA(T14, T24, T62, perm38_out_ga(T43, T62)) → ORDERED39_IN_GA(T24, T62)
ORDERED39_IN_GA(T99, .(T100, T101)) → U8_GA(T99, T100, T101, less61_in_ga(T99, T100))
ORDERED39_IN_GA(T99, .(T100, T101)) → LESS61_IN_GA(T99, T100)
LESS61_IN_GA(s(T115), T116) → U11_GA(T115, T116, less69_in_ga(T115, T116))
LESS61_IN_GA(s(T115), T116) → LESS69_IN_GA(T115, T116)
LESS69_IN_GA(s(T128), s(T129)) → U10_GA(T128, T129, less69_in_ga(T128, T129))
LESS69_IN_GA(s(T128), s(T129)) → LESS69_IN_GA(T128, T129)
U8_GA(T99, T100, T101, less61_out_ga(T99, T100)) → U9_GA(T99, T100, T101, ordered39_in_aa(T100, T101))
U8_GA(T99, T100, T101, less61_out_ga(T99, T100)) → ORDERED39_IN_AA(T100, T101)
ORDERED39_IN_AA(T99, .(T100, T101)) → U8_AA(T99, T100, T101, less61_in_aa(T99, T100))
ORDERED39_IN_AA(T99, .(T100, T101)) → LESS61_IN_AA(T99, T100)
LESS61_IN_AA(s(T115), T116) → U11_AA(T115, T116, less69_in_aa(T115, T116))
LESS61_IN_AA(s(T115), T116) → LESS69_IN_AA(T115, T116)
LESS69_IN_AA(s(T128), s(T129)) → U10_AA(T128, T129, less69_in_aa(T128, T129))
LESS69_IN_AA(s(T128), s(T129)) → LESS69_IN_AA(T128, T129)
U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → U9_AA(T99, T100, T101, ordered39_in_aa(T100, T101))
U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → ORDERED39_IN_AA(T100, T101)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
SS1_IN_GA(x1, x2)  =  SS1_IN_GA(x1)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x4)
APP18_IN_AAAG(x1, x2, x3, x4)  =  APP18_IN_AAAG(x4)
U1_AAAG(x1, x2, x3, x4, x5, x6)  =  U1_AAAG(x1, x6)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x4)
U14_GA(x1, x2, x3, x4)  =  U14_GA(x4)
APP28_IN_GGA(x1, x2, x3)  =  APP28_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x5)
U15_GA(x1, x2, x3, x4)  =  U15_GA(x4)
U16_GA(x1, x2, x3, x4)  =  U16_GA(x4)
PERM38_IN_GA(x1, x2)  =  PERM38_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x4)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x4)
U5_GA(x1, x2, x3, x4)  =  U5_GA(x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x4)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x4)
U17_GA(x1, x2, x3, x4)  =  U17_GA(x4)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x2, x4)
U19_GA(x1, x2, x3, x4)  =  U19_GA(x2, x4)
U20_GA(x1, x2, x3, x4)  =  U20_GA(x4)
ORDERED39_IN_GA(x1, x2)  =  ORDERED39_IN_GA(x1)
U8_GA(x1, x2, x3, x4)  =  U8_GA(x4)
LESS61_IN_GA(x1, x2)  =  LESS61_IN_GA(x1)
U11_GA(x1, x2, x3)  =  U11_GA(x3)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)
U10_GA(x1, x2, x3)  =  U10_GA(x3)
U9_GA(x1, x2, x3, x4)  =  U9_GA(x4)
ORDERED39_IN_AA(x1, x2)  =  ORDERED39_IN_AA
U8_AA(x1, x2, x3, x4)  =  U8_AA(x4)
LESS61_IN_AA(x1, x2)  =  LESS61_IN_AA
U11_AA(x1, x2, x3)  =  U11_AA(x3)
LESS69_IN_AA(x1, x2)  =  LESS69_IN_AA
U10_AA(x1, x2, x3)  =  U10_AA(x3)
U9_AA(x1, x2, x3, x4)  =  U9_AA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_GA(T14, .(T17, T18)) → U12_GA(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
SS1_IN_GA(T14, .(T17, T18)) → APP18_IN_AAAG(X23, T17, X24, T14)
APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → U1_AAAG(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → APP18_IN_AAAG(X67, T38, X68, T37)
SS1_IN_GA(T14, .(T24, T23)) → U13_GA(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_GA(T14, T24, T23, app28_in_gga(T21, T22, X25))
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → APP28_IN_GGA(T21, T22, X25)
APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → U2_GGA(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → APP28_IN_GGA(T58, T59, X101)
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_GA(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_GA(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_GA(T14, T24, T23, perm38_in_ga(T43, T23))
U15_GA(T14, T24, T23, app28_out_gga(T21, T22, T43)) → PERM38_IN_GA(T43, T23)
PERM38_IN_GA(T69, .(T72, T73)) → U3_GA(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
PERM38_IN_GA(T69, .(T72, T73)) → APP18_IN_AAAG(X120, T72, X121, T69)
PERM38_IN_GA(T69, .(T72, T78)) → U4_GA(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_GA(T69, T72, T78, app28_in_gga(T76, T77, X122))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → APP28_IN_GGA(T76, T77, X122)
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_GA(T69, T72, T78, perm38_in_ga(T83, T78))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83, T78)
SS1_IN_GA(T14, .(T24, T62)) → U17_GA(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_GA(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_GA(T14, T24, T62, app28_in_gga(T21, T22, T43))
U17_GA(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → APP28_IN_GGA(T21, T22, T43)
U18_GA(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_GA(T14, T24, T62, perm38_in_ga(T43, T62))
U18_GA(T14, T24, T62, app28_out_gga(T21, T22, T43)) → PERM38_IN_GA(T43, T62)
U19_GA(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_GA(T14, T24, T62, ordered39_in_ga(T24, T62))
U19_GA(T14, T24, T62, perm38_out_ga(T43, T62)) → ORDERED39_IN_GA(T24, T62)
ORDERED39_IN_GA(T99, .(T100, T101)) → U8_GA(T99, T100, T101, less61_in_ga(T99, T100))
ORDERED39_IN_GA(T99, .(T100, T101)) → LESS61_IN_GA(T99, T100)
LESS61_IN_GA(s(T115), T116) → U11_GA(T115, T116, less69_in_ga(T115, T116))
LESS61_IN_GA(s(T115), T116) → LESS69_IN_GA(T115, T116)
LESS69_IN_GA(s(T128), s(T129)) → U10_GA(T128, T129, less69_in_ga(T128, T129))
LESS69_IN_GA(s(T128), s(T129)) → LESS69_IN_GA(T128, T129)
U8_GA(T99, T100, T101, less61_out_ga(T99, T100)) → U9_GA(T99, T100, T101, ordered39_in_aa(T100, T101))
U8_GA(T99, T100, T101, less61_out_ga(T99, T100)) → ORDERED39_IN_AA(T100, T101)
ORDERED39_IN_AA(T99, .(T100, T101)) → U8_AA(T99, T100, T101, less61_in_aa(T99, T100))
ORDERED39_IN_AA(T99, .(T100, T101)) → LESS61_IN_AA(T99, T100)
LESS61_IN_AA(s(T115), T116) → U11_AA(T115, T116, less69_in_aa(T115, T116))
LESS61_IN_AA(s(T115), T116) → LESS69_IN_AA(T115, T116)
LESS69_IN_AA(s(T128), s(T129)) → U10_AA(T128, T129, less69_in_aa(T128, T129))
LESS69_IN_AA(s(T128), s(T129)) → LESS69_IN_AA(T128, T129)
U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → U9_AA(T99, T100, T101, ordered39_in_aa(T100, T101))
U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → ORDERED39_IN_AA(T100, T101)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
SS1_IN_GA(x1, x2)  =  SS1_IN_GA(x1)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x4)
APP18_IN_AAAG(x1, x2, x3, x4)  =  APP18_IN_AAAG(x4)
U1_AAAG(x1, x2, x3, x4, x5, x6)  =  U1_AAAG(x1, x6)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x4)
U14_GA(x1, x2, x3, x4)  =  U14_GA(x4)
APP28_IN_GGA(x1, x2, x3)  =  APP28_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x5)
U15_GA(x1, x2, x3, x4)  =  U15_GA(x4)
U16_GA(x1, x2, x3, x4)  =  U16_GA(x4)
PERM38_IN_GA(x1, x2)  =  PERM38_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x4)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x4)
U5_GA(x1, x2, x3, x4)  =  U5_GA(x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x4)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x4)
U17_GA(x1, x2, x3, x4)  =  U17_GA(x4)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x2, x4)
U19_GA(x1, x2, x3, x4)  =  U19_GA(x2, x4)
U20_GA(x1, x2, x3, x4)  =  U20_GA(x4)
ORDERED39_IN_GA(x1, x2)  =  ORDERED39_IN_GA(x1)
U8_GA(x1, x2, x3, x4)  =  U8_GA(x4)
LESS61_IN_GA(x1, x2)  =  LESS61_IN_GA(x1)
U11_GA(x1, x2, x3)  =  U11_GA(x3)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)
U10_GA(x1, x2, x3)  =  U10_GA(x3)
U9_GA(x1, x2, x3, x4)  =  U9_GA(x4)
ORDERED39_IN_AA(x1, x2)  =  ORDERED39_IN_AA
U8_AA(x1, x2, x3, x4)  =  U8_AA(x4)
LESS61_IN_AA(x1, x2)  =  LESS61_IN_AA
U11_AA(x1, x2, x3)  =  U11_AA(x3)
LESS69_IN_AA(x1, x2)  =  LESS69_IN_AA
U10_AA(x1, x2, x3)  =  U10_AA(x3)
U9_AA(x1, x2, x3, x4)  =  U9_AA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 6 SCCs with 34 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_AA(s(T128), s(T129)) → LESS69_IN_AA(T128, T129)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
LESS69_IN_AA(x1, x2)  =  LESS69_IN_AA

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_AA(s(T128), s(T129)) → LESS69_IN_AA(T128, T129)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS69_IN_AA(x1, x2)  =  LESS69_IN_AA

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_AALESS69_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = LESS69_IN_AA evaluates to t =LESS69_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LESS69_IN_AA to LESS69_IN_AA.



(15) NO

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → ORDERED39_IN_AA(T100, T101)
ORDERED39_IN_AA(T99, .(T100, T101)) → U8_AA(T99, T100, T101, less61_in_aa(T99, T100))

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
ORDERED39_IN_AA(x1, x2)  =  ORDERED39_IN_AA
U8_AA(x1, x2, x3, x4)  =  U8_AA(x4)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → ORDERED39_IN_AA(T100, T101)
ORDERED39_IN_AA(T99, .(T100, T101)) → U8_AA(T99, T100, T101, less61_in_aa(T99, T100))

The TRS R consists of the following rules:

less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
0  =  0
s(x1)  =  s(x1)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
ORDERED39_IN_AA(x1, x2)  =  ORDERED39_IN_AA
U8_AA(x1, x2, x3, x4)  =  U8_AA(x4)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA
ORDERED39_IN_AAU8_AA(less61_in_aa)

The TRS R consists of the following rules:

less61_in_aaless61_out_aa(0)
less61_in_aaU11_aa(less69_in_aa)
U11_aa(less69_out_aa(T115)) → less61_out_aa(s(T115))
less69_in_aaless69_out_aa(0)
less69_in_aaU10_aa(less69_in_aa)
U10_aa(less69_out_aa(T128)) → less69_out_aa(s(T128))

The set Q consists of the following terms:

less61_in_aa
U11_aa(x0)
less69_in_aa
U10_aa(x0)

We have to consider all (P,Q,R)-chains.

(21) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule ORDERED39_IN_AAU8_AA(less61_in_aa) at position [0] we obtained the following new rules [LPAR04]:

ORDERED39_IN_AAU8_AA(less61_out_aa(0))
ORDERED39_IN_AAU8_AA(U11_aa(less69_in_aa))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA
ORDERED39_IN_AAU8_AA(less61_out_aa(0))
ORDERED39_IN_AAU8_AA(U11_aa(less69_in_aa))

The TRS R consists of the following rules:

less61_in_aaless61_out_aa(0)
less61_in_aaU11_aa(less69_in_aa)
U11_aa(less69_out_aa(T115)) → less61_out_aa(s(T115))
less69_in_aaless69_out_aa(0)
less69_in_aaU10_aa(less69_in_aa)
U10_aa(less69_out_aa(T128)) → less69_out_aa(s(T128))

The set Q consists of the following terms:

less61_in_aa
U11_aa(x0)
less69_in_aa
U10_aa(x0)

We have to consider all (P,Q,R)-chains.

(23) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA
ORDERED39_IN_AAU8_AA(less61_out_aa(0))
ORDERED39_IN_AAU8_AA(U11_aa(less69_in_aa))

The TRS R consists of the following rules:

less69_in_aaless69_out_aa(0)
less69_in_aaU10_aa(less69_in_aa)
U11_aa(less69_out_aa(T115)) → less61_out_aa(s(T115))
U10_aa(less69_out_aa(T128)) → less69_out_aa(s(T128))

The set Q consists of the following terms:

less61_in_aa
U11_aa(x0)
less69_in_aa
U10_aa(x0)

We have to consider all (P,Q,R)-chains.

(25) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

less61_in_aa

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA
ORDERED39_IN_AAU8_AA(less61_out_aa(0))
ORDERED39_IN_AAU8_AA(U11_aa(less69_in_aa))

The TRS R consists of the following rules:

less69_in_aaless69_out_aa(0)
less69_in_aaU10_aa(less69_in_aa)
U11_aa(less69_out_aa(T115)) → less61_out_aa(s(T115))
U10_aa(less69_out_aa(T128)) → less69_out_aa(s(T128))

The set Q consists of the following terms:

U11_aa(x0)
less69_in_aa
U10_aa(x0)

We have to consider all (P,Q,R)-chains.

(27) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = ORDERED39_IN_AA evaluates to t =ORDERED39_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

ORDERED39_IN_AAU8_AA(less61_out_aa(0))
with rule ORDERED39_IN_AAU8_AA(less61_out_aa(0)) at position [] and matcher [ ]

U8_AA(less61_out_aa(0))ORDERED39_IN_AA
with rule U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(28) NO

(29) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T128), s(T129)) → LESS69_IN_GA(T128, T129)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(30) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(31) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T128), s(T129)) → LESS69_IN_GA(T128, T129)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(32) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T128)) → LESS69_IN_GA(T128)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(34) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS69_IN_GA(s(T128)) → LESS69_IN_GA(T128)
    The graph contains the following edges 1 > 1

(35) YES

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → APP28_IN_GGA(T58, T59, X101)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
APP28_IN_GGA(x1, x2, x3)  =  APP28_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(37) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(38) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → APP28_IN_GGA(T58, T59, X101)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP28_IN_GGA(x1, x2, x3)  =  APP28_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(39) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP28_IN_GGA(.(T57, T58), T59) → APP28_IN_GGA(T58, T59)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(41) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP28_IN_GGA(.(T57, T58), T59) → APP28_IN_GGA(T58, T59)
    The graph contains the following edges 1 > 1, 2 >= 2

(42) YES

(43) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → APP18_IN_AAAG(X67, T38, X68, T37)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
APP18_IN_AAAG(x1, x2, x3, x4)  =  APP18_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(44) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(45) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → APP18_IN_AAAG(X67, T38, X68, T37)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP18_IN_AAAG(x1, x2, x3, x4)  =  APP18_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(46) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP18_IN_AAAG(.(X66, T37)) → APP18_IN_AAAG(T37)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(48) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP18_IN_AAAG(.(X66, T37)) → APP18_IN_AAAG(T37)
    The graph contains the following edges 1 > 1

(49) YES

(50) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_GA(T69, .(T72, T78)) → U4_GA(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83, T78)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga
U12_ga(x1, x2, x3, x4)  =  U12_ga(x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga
U8_ga(x1, x2, x3, x4)  =  U8_ga(x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga
U10_ga(x1, x2, x3)  =  U10_ga(x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
PERM38_IN_GA(x1, x2)  =  PERM38_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x4)

We have to consider all (P,R,Pi)-chains

(51) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(52) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_GA(T69, .(T72, T78)) → U4_GA(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83, T78)

The TRS R consists of the following rules:

app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))

The argument filtering Pi contains the following mapping:
[]  =  []
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x6)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x5)
PERM38_IN_GA(x1, x2)  =  PERM38_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x4)

We have to consider all (P,R,Pi)-chains

(53) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PERM38_IN_GA(T69) → U4_GA(app18_in_aaag(T69))
U4_GA(app18_out_aaag(T76, T72, T77)) → U6_GA(app28_in_gga(T76, T77))
U6_GA(app28_out_gga(T83)) → PERM38_IN_GA(T83)

The TRS R consists of the following rules:

app18_in_aaag(.(T31, X46)) → app18_out_aaag([], T31, X46)
app18_in_aaag(.(X66, T37)) → U1_aaag(X66, app18_in_aaag(T37))
app28_in_gga([], T50) → app28_out_gga(T50)
app28_in_gga(.(T57, T58), T59) → U2_gga(T57, app28_in_gga(T58, T59))
U1_aaag(X66, app18_out_aaag(X67, T38, X68)) → app18_out_aaag(.(X66, X67), T38, X68)
U2_gga(T57, app28_out_gga(X101)) → app28_out_gga(.(T57, X101))

The set Q consists of the following terms:

app18_in_aaag(x0)
app28_in_gga(x0, x1)
U1_aaag(x0, x1)
U2_gga(x0, x1)

We have to consider all (P,Q,R)-chains.

(55) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

PERM38_IN_GA(T69) → U4_GA(app18_in_aaag(T69))
U4_GA(app18_out_aaag(T76, T72, T77)) → U6_GA(app28_in_gga(T76, T77))
U6_GA(app28_out_gga(T83)) → PERM38_IN_GA(T83)

Strictly oriented rules of the TRS R:

app18_in_aaag(.(T31, X46)) → app18_out_aaag([], T31, X46)
app28_in_gga([], T50) → app28_out_gga(T50)

Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 5 + x1 + x2   
POL(PERM38_IN_GA(x1)) = 1 + x1   
POL(U1_aaag(x1, x2)) = 5 + x1 + x2   
POL(U2_gga(x1, x2)) = 5 + x1 + x2   
POL(U4_GA(x1)) = x1   
POL(U6_GA(x1)) = x1   
POL([]) = 0   
POL(app18_in_aaag(x1)) = x1   
POL(app18_out_aaag(x1, x2, x3)) = 4 + x1 + x2 + x3   
POL(app28_in_gga(x1, x2)) = 3 + x1 + x2   
POL(app28_out_gga(x1)) = 2 + x1   

(56) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

app18_in_aaag(.(X66, T37)) → U1_aaag(X66, app18_in_aaag(T37))
app28_in_gga(.(T57, T58), T59) → U2_gga(T57, app28_in_gga(T58, T59))
U1_aaag(X66, app18_out_aaag(X67, T38, X68)) → app18_out_aaag(.(X66, X67), T38, X68)
U2_gga(T57, app28_out_gga(X101)) → app28_out_gga(.(T57, X101))

The set Q consists of the following terms:

app18_in_aaag(x0)
app28_in_gga(x0, x1)
U1_aaag(x0, x1)
U2_gga(x0, x1)

We have to consider all (P,Q,R)-chains.

(57) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(58) YES

(59) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ss1_in: (b,f)
app18_in: (f,f,f,b)
app28_in: (b,b,f)
perm38_in: (b,f)
ordered39_in: (b,f) (f,f)
less61_in: (b,f) (f,f)
less69_in: (b,f) (f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(60) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)

(61) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_GA(T14, .(T17, T18)) → U12_GA(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
SS1_IN_GA(T14, .(T17, T18)) → APP18_IN_AAAG(X23, T17, X24, T14)
APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → U1_AAAG(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → APP18_IN_AAAG(X67, T38, X68, T37)
SS1_IN_GA(T14, .(T24, T23)) → U13_GA(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_GA(T14, T24, T23, app28_in_gga(T21, T22, X25))
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → APP28_IN_GGA(T21, T22, X25)
APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → U2_GGA(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → APP28_IN_GGA(T58, T59, X101)
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_GA(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_GA(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_GA(T14, T24, T23, perm38_in_ga(T43, T23))
U15_GA(T14, T24, T23, app28_out_gga(T21, T22, T43)) → PERM38_IN_GA(T43, T23)
PERM38_IN_GA(T69, .(T72, T73)) → U3_GA(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
PERM38_IN_GA(T69, .(T72, T73)) → APP18_IN_AAAG(X120, T72, X121, T69)
PERM38_IN_GA(T69, .(T72, T78)) → U4_GA(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_GA(T69, T72, T78, app28_in_gga(T76, T77, X122))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → APP28_IN_GGA(T76, T77, X122)
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_GA(T69, T72, T78, perm38_in_ga(T83, T78))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83, T78)
SS1_IN_GA(T14, .(T24, T62)) → U17_GA(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_GA(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_GA(T14, T24, T62, app28_in_gga(T21, T22, T43))
U17_GA(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → APP28_IN_GGA(T21, T22, T43)
U18_GA(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_GA(T14, T24, T62, perm38_in_ga(T43, T62))
U18_GA(T14, T24, T62, app28_out_gga(T21, T22, T43)) → PERM38_IN_GA(T43, T62)
U19_GA(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_GA(T14, T24, T62, ordered39_in_ga(T24, T62))
U19_GA(T14, T24, T62, perm38_out_ga(T43, T62)) → ORDERED39_IN_GA(T24, T62)
ORDERED39_IN_GA(T99, .(T100, T101)) → U8_GA(T99, T100, T101, less61_in_ga(T99, T100))
ORDERED39_IN_GA(T99, .(T100, T101)) → LESS61_IN_GA(T99, T100)
LESS61_IN_GA(s(T115), T116) → U11_GA(T115, T116, less69_in_ga(T115, T116))
LESS61_IN_GA(s(T115), T116) → LESS69_IN_GA(T115, T116)
LESS69_IN_GA(s(T128), s(T129)) → U10_GA(T128, T129, less69_in_ga(T128, T129))
LESS69_IN_GA(s(T128), s(T129)) → LESS69_IN_GA(T128, T129)
U8_GA(T99, T100, T101, less61_out_ga(T99, T100)) → U9_GA(T99, T100, T101, ordered39_in_aa(T100, T101))
U8_GA(T99, T100, T101, less61_out_ga(T99, T100)) → ORDERED39_IN_AA(T100, T101)
ORDERED39_IN_AA(T99, .(T100, T101)) → U8_AA(T99, T100, T101, less61_in_aa(T99, T100))
ORDERED39_IN_AA(T99, .(T100, T101)) → LESS61_IN_AA(T99, T100)
LESS61_IN_AA(s(T115), T116) → U11_AA(T115, T116, less69_in_aa(T115, T116))
LESS61_IN_AA(s(T115), T116) → LESS69_IN_AA(T115, T116)
LESS69_IN_AA(s(T128), s(T129)) → U10_AA(T128, T129, less69_in_aa(T128, T129))
LESS69_IN_AA(s(T128), s(T129)) → LESS69_IN_AA(T128, T129)
U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → U9_AA(T99, T100, T101, ordered39_in_aa(T100, T101))
U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → ORDERED39_IN_AA(T100, T101)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
SS1_IN_GA(x1, x2)  =  SS1_IN_GA(x1)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x1, x4)
APP18_IN_AAAG(x1, x2, x3, x4)  =  APP18_IN_AAAG(x4)
U1_AAAG(x1, x2, x3, x4, x5, x6)  =  U1_AAAG(x1, x5, x6)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x1, x4)
U14_GA(x1, x2, x3, x4)  =  U14_GA(x1, x4)
APP28_IN_GGA(x1, x2, x3)  =  APP28_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x2, x3, x5)
U15_GA(x1, x2, x3, x4)  =  U15_GA(x1, x4)
U16_GA(x1, x2, x3, x4)  =  U16_GA(x1, x4)
PERM38_IN_GA(x1, x2)  =  PERM38_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x4)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)
U5_GA(x1, x2, x3, x4)  =  U5_GA(x1, x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x1, x4)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x1, x4)
U17_GA(x1, x2, x3, x4)  =  U17_GA(x1, x4)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x1, x2, x4)
U19_GA(x1, x2, x3, x4)  =  U19_GA(x1, x2, x4)
U20_GA(x1, x2, x3, x4)  =  U20_GA(x1, x4)
ORDERED39_IN_GA(x1, x2)  =  ORDERED39_IN_GA(x1)
U8_GA(x1, x2, x3, x4)  =  U8_GA(x1, x4)
LESS61_IN_GA(x1, x2)  =  LESS61_IN_GA(x1)
U11_GA(x1, x2, x3)  =  U11_GA(x1, x3)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)
U10_GA(x1, x2, x3)  =  U10_GA(x1, x3)
U9_GA(x1, x2, x3, x4)  =  U9_GA(x1, x4)
ORDERED39_IN_AA(x1, x2)  =  ORDERED39_IN_AA
U8_AA(x1, x2, x3, x4)  =  U8_AA(x4)
LESS61_IN_AA(x1, x2)  =  LESS61_IN_AA
U11_AA(x1, x2, x3)  =  U11_AA(x3)
LESS69_IN_AA(x1, x2)  =  LESS69_IN_AA
U10_AA(x1, x2, x3)  =  U10_AA(x3)
U9_AA(x1, x2, x3, x4)  =  U9_AA(x4)

We have to consider all (P,R,Pi)-chains

(62) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SS1_IN_GA(T14, .(T17, T18)) → U12_GA(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
SS1_IN_GA(T14, .(T17, T18)) → APP18_IN_AAAG(X23, T17, X24, T14)
APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → U1_AAAG(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → APP18_IN_AAAG(X67, T38, X68, T37)
SS1_IN_GA(T14, .(T24, T23)) → U13_GA(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_GA(T14, T24, T23, app28_in_gga(T21, T22, X25))
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → APP28_IN_GGA(T21, T22, X25)
APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → U2_GGA(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → APP28_IN_GGA(T58, T59, X101)
U13_GA(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_GA(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_GA(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_GA(T14, T24, T23, perm38_in_ga(T43, T23))
U15_GA(T14, T24, T23, app28_out_gga(T21, T22, T43)) → PERM38_IN_GA(T43, T23)
PERM38_IN_GA(T69, .(T72, T73)) → U3_GA(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
PERM38_IN_GA(T69, .(T72, T73)) → APP18_IN_AAAG(X120, T72, X121, T69)
PERM38_IN_GA(T69, .(T72, T78)) → U4_GA(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_GA(T69, T72, T78, app28_in_gga(T76, T77, X122))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → APP28_IN_GGA(T76, T77, X122)
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_GA(T69, T72, T78, perm38_in_ga(T83, T78))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83, T78)
SS1_IN_GA(T14, .(T24, T62)) → U17_GA(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_GA(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_GA(T14, T24, T62, app28_in_gga(T21, T22, T43))
U17_GA(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → APP28_IN_GGA(T21, T22, T43)
U18_GA(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_GA(T14, T24, T62, perm38_in_ga(T43, T62))
U18_GA(T14, T24, T62, app28_out_gga(T21, T22, T43)) → PERM38_IN_GA(T43, T62)
U19_GA(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_GA(T14, T24, T62, ordered39_in_ga(T24, T62))
U19_GA(T14, T24, T62, perm38_out_ga(T43, T62)) → ORDERED39_IN_GA(T24, T62)
ORDERED39_IN_GA(T99, .(T100, T101)) → U8_GA(T99, T100, T101, less61_in_ga(T99, T100))
ORDERED39_IN_GA(T99, .(T100, T101)) → LESS61_IN_GA(T99, T100)
LESS61_IN_GA(s(T115), T116) → U11_GA(T115, T116, less69_in_ga(T115, T116))
LESS61_IN_GA(s(T115), T116) → LESS69_IN_GA(T115, T116)
LESS69_IN_GA(s(T128), s(T129)) → U10_GA(T128, T129, less69_in_ga(T128, T129))
LESS69_IN_GA(s(T128), s(T129)) → LESS69_IN_GA(T128, T129)
U8_GA(T99, T100, T101, less61_out_ga(T99, T100)) → U9_GA(T99, T100, T101, ordered39_in_aa(T100, T101))
U8_GA(T99, T100, T101, less61_out_ga(T99, T100)) → ORDERED39_IN_AA(T100, T101)
ORDERED39_IN_AA(T99, .(T100, T101)) → U8_AA(T99, T100, T101, less61_in_aa(T99, T100))
ORDERED39_IN_AA(T99, .(T100, T101)) → LESS61_IN_AA(T99, T100)
LESS61_IN_AA(s(T115), T116) → U11_AA(T115, T116, less69_in_aa(T115, T116))
LESS61_IN_AA(s(T115), T116) → LESS69_IN_AA(T115, T116)
LESS69_IN_AA(s(T128), s(T129)) → U10_AA(T128, T129, less69_in_aa(T128, T129))
LESS69_IN_AA(s(T128), s(T129)) → LESS69_IN_AA(T128, T129)
U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → U9_AA(T99, T100, T101, ordered39_in_aa(T100, T101))
U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → ORDERED39_IN_AA(T100, T101)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
SS1_IN_GA(x1, x2)  =  SS1_IN_GA(x1)
U12_GA(x1, x2, x3, x4)  =  U12_GA(x1, x4)
APP18_IN_AAAG(x1, x2, x3, x4)  =  APP18_IN_AAAG(x4)
U1_AAAG(x1, x2, x3, x4, x5, x6)  =  U1_AAAG(x1, x5, x6)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x1, x4)
U14_GA(x1, x2, x3, x4)  =  U14_GA(x1, x4)
APP28_IN_GGA(x1, x2, x3)  =  APP28_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x2, x3, x5)
U15_GA(x1, x2, x3, x4)  =  U15_GA(x1, x4)
U16_GA(x1, x2, x3, x4)  =  U16_GA(x1, x4)
PERM38_IN_GA(x1, x2)  =  PERM38_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x4)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)
U5_GA(x1, x2, x3, x4)  =  U5_GA(x1, x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x1, x4)
U7_GA(x1, x2, x3, x4)  =  U7_GA(x1, x4)
U17_GA(x1, x2, x3, x4)  =  U17_GA(x1, x4)
U18_GA(x1, x2, x3, x4)  =  U18_GA(x1, x2, x4)
U19_GA(x1, x2, x3, x4)  =  U19_GA(x1, x2, x4)
U20_GA(x1, x2, x3, x4)  =  U20_GA(x1, x4)
ORDERED39_IN_GA(x1, x2)  =  ORDERED39_IN_GA(x1)
U8_GA(x1, x2, x3, x4)  =  U8_GA(x1, x4)
LESS61_IN_GA(x1, x2)  =  LESS61_IN_GA(x1)
U11_GA(x1, x2, x3)  =  U11_GA(x1, x3)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)
U10_GA(x1, x2, x3)  =  U10_GA(x1, x3)
U9_GA(x1, x2, x3, x4)  =  U9_GA(x1, x4)
ORDERED39_IN_AA(x1, x2)  =  ORDERED39_IN_AA
U8_AA(x1, x2, x3, x4)  =  U8_AA(x4)
LESS61_IN_AA(x1, x2)  =  LESS61_IN_AA
U11_AA(x1, x2, x3)  =  U11_AA(x3)
LESS69_IN_AA(x1, x2)  =  LESS69_IN_AA
U10_AA(x1, x2, x3)  =  U10_AA(x3)
U9_AA(x1, x2, x3, x4)  =  U9_AA(x4)

We have to consider all (P,R,Pi)-chains

(63) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 6 SCCs with 34 less nodes.

(64) Complex Obligation (AND)

(65) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_AA(s(T128), s(T129)) → LESS69_IN_AA(T128, T129)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
LESS69_IN_AA(x1, x2)  =  LESS69_IN_AA

We have to consider all (P,R,Pi)-chains

(66) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(67) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_AA(s(T128), s(T129)) → LESS69_IN_AA(T128, T129)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS69_IN_AA(x1, x2)  =  LESS69_IN_AA

We have to consider all (P,R,Pi)-chains

(68) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_AALESS69_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(70) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = LESS69_IN_AA evaluates to t =LESS69_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LESS69_IN_AA to LESS69_IN_AA.



(71) NO

(72) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → ORDERED39_IN_AA(T100, T101)
ORDERED39_IN_AA(T99, .(T100, T101)) → U8_AA(T99, T100, T101, less61_in_aa(T99, T100))

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
ORDERED39_IN_AA(x1, x2)  =  ORDERED39_IN_AA
U8_AA(x1, x2, x3, x4)  =  U8_AA(x4)

We have to consider all (P,R,Pi)-chains

(73) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(74) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U8_AA(T99, T100, T101, less61_out_aa(T99, T100)) → ORDERED39_IN_AA(T100, T101)
ORDERED39_IN_AA(T99, .(T100, T101)) → U8_AA(T99, T100, T101, less61_in_aa(T99, T100))

The TRS R consists of the following rules:

less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
0  =  0
s(x1)  =  s(x1)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
ORDERED39_IN_AA(x1, x2)  =  ORDERED39_IN_AA
U8_AA(x1, x2, x3, x4)  =  U8_AA(x4)

We have to consider all (P,R,Pi)-chains

(75) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA
ORDERED39_IN_AAU8_AA(less61_in_aa)

The TRS R consists of the following rules:

less61_in_aaless61_out_aa(0)
less61_in_aaU11_aa(less69_in_aa)
U11_aa(less69_out_aa(T115)) → less61_out_aa(s(T115))
less69_in_aaless69_out_aa(0)
less69_in_aaU10_aa(less69_in_aa)
U10_aa(less69_out_aa(T128)) → less69_out_aa(s(T128))

The set Q consists of the following terms:

less61_in_aa
U11_aa(x0)
less69_in_aa
U10_aa(x0)

We have to consider all (P,Q,R)-chains.

(77) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule ORDERED39_IN_AAU8_AA(less61_in_aa) at position [0] we obtained the following new rules [LPAR04]:

ORDERED39_IN_AAU8_AA(less61_out_aa(0))
ORDERED39_IN_AAU8_AA(U11_aa(less69_in_aa))

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA
ORDERED39_IN_AAU8_AA(less61_out_aa(0))
ORDERED39_IN_AAU8_AA(U11_aa(less69_in_aa))

The TRS R consists of the following rules:

less61_in_aaless61_out_aa(0)
less61_in_aaU11_aa(less69_in_aa)
U11_aa(less69_out_aa(T115)) → less61_out_aa(s(T115))
less69_in_aaless69_out_aa(0)
less69_in_aaU10_aa(less69_in_aa)
U10_aa(less69_out_aa(T128)) → less69_out_aa(s(T128))

The set Q consists of the following terms:

less61_in_aa
U11_aa(x0)
less69_in_aa
U10_aa(x0)

We have to consider all (P,Q,R)-chains.

(79) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA
ORDERED39_IN_AAU8_AA(less61_out_aa(0))
ORDERED39_IN_AAU8_AA(U11_aa(less69_in_aa))

The TRS R consists of the following rules:

less69_in_aaless69_out_aa(0)
less69_in_aaU10_aa(less69_in_aa)
U11_aa(less69_out_aa(T115)) → less61_out_aa(s(T115))
U10_aa(less69_out_aa(T128)) → less69_out_aa(s(T128))

The set Q consists of the following terms:

less61_in_aa
U11_aa(x0)
less69_in_aa
U10_aa(x0)

We have to consider all (P,Q,R)-chains.

(81) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

less61_in_aa

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA
ORDERED39_IN_AAU8_AA(less61_out_aa(0))
ORDERED39_IN_AAU8_AA(U11_aa(less69_in_aa))

The TRS R consists of the following rules:

less69_in_aaless69_out_aa(0)
less69_in_aaU10_aa(less69_in_aa)
U11_aa(less69_out_aa(T115)) → less61_out_aa(s(T115))
U10_aa(less69_out_aa(T128)) → less69_out_aa(s(T128))

The set Q consists of the following terms:

U11_aa(x0)
less69_in_aa
U10_aa(x0)

We have to consider all (P,Q,R)-chains.

(83) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = ORDERED39_IN_AA evaluates to t =ORDERED39_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

ORDERED39_IN_AAU8_AA(less61_out_aa(0))
with rule ORDERED39_IN_AAU8_AA(less61_out_aa(0)) at position [] and matcher [ ]

U8_AA(less61_out_aa(0))ORDERED39_IN_AA
with rule U8_AA(less61_out_aa(T99)) → ORDERED39_IN_AA

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(84) NO

(85) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T128), s(T129)) → LESS69_IN_GA(T128, T129)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(86) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(87) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T128), s(T129)) → LESS69_IN_GA(T128, T129)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(88) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T128)) → LESS69_IN_GA(T128)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(90) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS69_IN_GA(s(T128)) → LESS69_IN_GA(T128)
    The graph contains the following edges 1 > 1

(91) YES

(92) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → APP28_IN_GGA(T58, T59, X101)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
APP28_IN_GGA(x1, x2, x3)  =  APP28_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(93) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(94) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP28_IN_GGA(.(T57, T58), T59, .(T57, X101)) → APP28_IN_GGA(T58, T59, X101)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP28_IN_GGA(x1, x2, x3)  =  APP28_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(95) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP28_IN_GGA(.(T57, T58), T59) → APP28_IN_GGA(T58, T59)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(97) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP28_IN_GGA(.(T57, T58), T59) → APP28_IN_GGA(T58, T59)
    The graph contains the following edges 1 > 1, 2 >= 2

(98) YES

(99) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → APP18_IN_AAAG(X67, T38, X68, T37)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
APP18_IN_AAAG(x1, x2, x3, x4)  =  APP18_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(100) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(101) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP18_IN_AAAG(.(X66, X67), T38, X68, .(X66, T37)) → APP18_IN_AAAG(X67, T38, X68, T37)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP18_IN_AAAG(x1, x2, x3, x4)  =  APP18_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(102) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP18_IN_AAAG(.(X66, T37)) → APP18_IN_AAAG(T37)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(104) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP18_IN_AAAG(.(X66, T37)) → APP18_IN_AAAG(T37)
    The graph contains the following edges 1 > 1

(105) YES

(106) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_GA(T69, .(T72, T78)) → U4_GA(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83, T78)

The TRS R consists of the following rules:

ss1_in_ga([], []) → ss1_out_ga([], [])
ss1_in_ga(T14, .(T17, T18)) → U12_ga(T14, T17, T18, app18_in_aaag(X23, T17, X24, T14))
app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U12_ga(T14, T17, T18, app18_out_aaag(X23, T17, X24, T14)) → ss1_out_ga(T14, .(T17, T18))
ss1_in_ga(T14, .(T24, T23)) → U13_ga(T14, T24, T23, app18_in_aaag(T21, T24, T22, T14))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U14_ga(T14, T24, T23, app28_in_gga(T21, T22, X25))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))
U14_ga(T14, T24, T23, app28_out_gga(T21, T22, X25)) → ss1_out_ga(T14, .(T24, T23))
U13_ga(T14, T24, T23, app18_out_aaag(T21, T24, T22, T14)) → U15_ga(T14, T24, T23, app28_in_gga(T21, T22, T43))
U15_ga(T14, T24, T23, app28_out_gga(T21, T22, T43)) → U16_ga(T14, T24, T23, perm38_in_ga(T43, T23))
perm38_in_ga([], []) → perm38_out_ga([], [])
perm38_in_ga(T69, .(T72, T73)) → U3_ga(T69, T72, T73, app18_in_aaag(X120, T72, X121, T69))
U3_ga(T69, T72, T73, app18_out_aaag(X120, T72, X121, T69)) → perm38_out_ga(T69, .(T72, T73))
perm38_in_ga(T69, .(T72, T78)) → U4_ga(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U5_ga(T69, T72, T78, app28_in_gga(T76, T77, X122))
U5_ga(T69, T72, T78, app28_out_gga(T76, T77, X122)) → perm38_out_ga(T69, .(T72, T78))
U4_ga(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_ga(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_ga(T69, T72, T78, app28_out_gga(T76, T77, T83)) → U7_ga(T69, T72, T78, perm38_in_ga(T83, T78))
U7_ga(T69, T72, T78, perm38_out_ga(T83, T78)) → perm38_out_ga(T69, .(T72, T78))
U16_ga(T14, T24, T23, perm38_out_ga(T43, T23)) → ss1_out_ga(T14, .(T24, T23))
ss1_in_ga(T14, .(T24, T62)) → U17_ga(T14, T24, T62, app18_in_aaag(T21, T24, T22, T14))
U17_ga(T14, T24, T62, app18_out_aaag(T21, T24, T22, T14)) → U18_ga(T14, T24, T62, app28_in_gga(T21, T22, T43))
U18_ga(T14, T24, T62, app28_out_gga(T21, T22, T43)) → U19_ga(T14, T24, T62, perm38_in_ga(T43, T62))
U19_ga(T14, T24, T62, perm38_out_ga(T43, T62)) → U20_ga(T14, T24, T62, ordered39_in_ga(T24, T62))
ordered39_in_ga(T92, []) → ordered39_out_ga(T92, [])
ordered39_in_ga(T99, .(T100, T101)) → U8_ga(T99, T100, T101, less61_in_ga(T99, T100))
less61_in_ga(0, T110) → less61_out_ga(0, T110)
less61_in_ga(s(T115), T116) → U11_ga(T115, T116, less69_in_ga(T115, T116))
less69_in_ga(0, s(T123)) → less69_out_ga(0, s(T123))
less69_in_ga(s(T128), s(T129)) → U10_ga(T128, T129, less69_in_ga(T128, T129))
U10_ga(T128, T129, less69_out_ga(T128, T129)) → less69_out_ga(s(T128), s(T129))
U11_ga(T115, T116, less69_out_ga(T115, T116)) → less61_out_ga(s(T115), T116)
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → ordered39_out_ga(T99, .(T100, T101))
U8_ga(T99, T100, T101, less61_out_ga(T99, T100)) → U9_ga(T99, T100, T101, ordered39_in_aa(T100, T101))
ordered39_in_aa(T92, []) → ordered39_out_aa(T92, [])
ordered39_in_aa(T99, .(T100, T101)) → U8_aa(T99, T100, T101, less61_in_aa(T99, T100))
less61_in_aa(0, T110) → less61_out_aa(0, T110)
less61_in_aa(s(T115), T116) → U11_aa(T115, T116, less69_in_aa(T115, T116))
less69_in_aa(0, s(T123)) → less69_out_aa(0, s(T123))
less69_in_aa(s(T128), s(T129)) → U10_aa(T128, T129, less69_in_aa(T128, T129))
U10_aa(T128, T129, less69_out_aa(T128, T129)) → less69_out_aa(s(T128), s(T129))
U11_aa(T115, T116, less69_out_aa(T115, T116)) → less61_out_aa(s(T115), T116)
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → ordered39_out_aa(T99, .(T100, T101))
U8_aa(T99, T100, T101, less61_out_aa(T99, T100)) → U9_aa(T99, T100, T101, ordered39_in_aa(T100, T101))
U9_aa(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_aa(T99, .(T100, T101))
U9_ga(T99, T100, T101, ordered39_out_aa(T100, T101)) → ordered39_out_ga(T99, .(T100, T101))
U20_ga(T14, T24, T62, ordered39_out_ga(T24, T62)) → ss1_out_ga(T14, .(T24, T62))

The argument filtering Pi contains the following mapping:
ss1_in_ga(x1, x2)  =  ss1_in_ga(x1)
[]  =  []
ss1_out_ga(x1, x2)  =  ss1_out_ga(x1)
U12_ga(x1, x2, x3, x4)  =  U12_ga(x1, x4)
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U13_ga(x1, x2, x3, x4)  =  U13_ga(x1, x4)
U14_ga(x1, x2, x3, x4)  =  U14_ga(x1, x4)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
U15_ga(x1, x2, x3, x4)  =  U15_ga(x1, x4)
U16_ga(x1, x2, x3, x4)  =  U16_ga(x1, x4)
perm38_in_ga(x1, x2)  =  perm38_in_ga(x1)
perm38_out_ga(x1, x2)  =  perm38_out_ga(x1)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
U5_ga(x1, x2, x3, x4)  =  U5_ga(x1, x4)
U6_ga(x1, x2, x3, x4)  =  U6_ga(x1, x4)
U7_ga(x1, x2, x3, x4)  =  U7_ga(x1, x4)
U17_ga(x1, x2, x3, x4)  =  U17_ga(x1, x4)
U18_ga(x1, x2, x3, x4)  =  U18_ga(x1, x2, x4)
U19_ga(x1, x2, x3, x4)  =  U19_ga(x1, x2, x4)
U20_ga(x1, x2, x3, x4)  =  U20_ga(x1, x4)
ordered39_in_ga(x1, x2)  =  ordered39_in_ga(x1)
ordered39_out_ga(x1, x2)  =  ordered39_out_ga(x1)
U8_ga(x1, x2, x3, x4)  =  U8_ga(x1, x4)
less61_in_ga(x1, x2)  =  less61_in_ga(x1)
0  =  0
less61_out_ga(x1, x2)  =  less61_out_ga(x1)
s(x1)  =  s(x1)
U11_ga(x1, x2, x3)  =  U11_ga(x1, x3)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U10_ga(x1, x2, x3)  =  U10_ga(x1, x3)
U9_ga(x1, x2, x3, x4)  =  U9_ga(x1, x4)
ordered39_in_aa(x1, x2)  =  ordered39_in_aa
ordered39_out_aa(x1, x2)  =  ordered39_out_aa
U8_aa(x1, x2, x3, x4)  =  U8_aa(x4)
less61_in_aa(x1, x2)  =  less61_in_aa
less61_out_aa(x1, x2)  =  less61_out_aa(x1)
U11_aa(x1, x2, x3)  =  U11_aa(x3)
less69_in_aa(x1, x2)  =  less69_in_aa
less69_out_aa(x1, x2)  =  less69_out_aa(x1)
U10_aa(x1, x2, x3)  =  U10_aa(x3)
U9_aa(x1, x2, x3, x4)  =  U9_aa(x4)
PERM38_IN_GA(x1, x2)  =  PERM38_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x1, x4)

We have to consider all (P,R,Pi)-chains

(107) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(108) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PERM38_IN_GA(T69, .(T72, T78)) → U4_GA(T69, T72, T78, app18_in_aaag(T76, T72, T77, T69))
U4_GA(T69, T72, T78, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, T72, T78, app28_in_gga(T76, T77, T83))
U6_GA(T69, T72, T78, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83, T78)

The TRS R consists of the following rules:

app18_in_aaag([], T31, X46, .(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, X67), T38, X68, .(X66, T37)) → U1_aaag(X66, X67, T38, X68, T37, app18_in_aaag(X67, T38, X68, T37))
app28_in_gga([], T50, T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59, .(T57, X101)) → U2_gga(T57, T58, T59, X101, app28_in_gga(T58, T59, X101))
U1_aaag(X66, X67, T38, X68, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U2_gga(T57, T58, T59, X101, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))

The argument filtering Pi contains the following mapping:
[]  =  []
app18_in_aaag(x1, x2, x3, x4)  =  app18_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app18_out_aaag(x1, x2, x3, x4)  =  app18_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
app28_in_gga(x1, x2, x3)  =  app28_in_gga(x1, x2)
app28_out_gga(x1, x2, x3)  =  app28_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
PERM38_IN_GA(x1, x2)  =  PERM38_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)
U6_GA(x1, x2, x3, x4)  =  U6_GA(x1, x4)

We have to consider all (P,R,Pi)-chains

(109) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PERM38_IN_GA(T69) → U4_GA(T69, app18_in_aaag(T69))
U4_GA(T69, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, app28_in_gga(T76, T77))
U6_GA(T69, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83)

The TRS R consists of the following rules:

app18_in_aaag(.(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, T37)) → U1_aaag(X66, T37, app18_in_aaag(T37))
app28_in_gga([], T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59) → U2_gga(T57, T58, T59, app28_in_gga(T58, T59))
U1_aaag(X66, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U2_gga(T57, T58, T59, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))

The set Q consists of the following terms:

app18_in_aaag(x0)
app28_in_gga(x0, x1)
U1_aaag(x0, x1, x2)
U2_gga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PERM38_IN_GA(T69) → U4_GA(T69, app18_in_aaag(T69))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x2   
POL(PERM38_IN_GA(x1)) = 1 + x1   
POL(U1_aaag(x1, x2, x3)) = 1 + x3   
POL(U2_gga(x1, x2, x3, x4)) = 1 + x4   
POL(U4_GA(x1, x2)) = x2   
POL(U6_GA(x1, x2)) = x2   
POL([]) = 1   
POL(app18_in_aaag(x1)) = x1   
POL(app18_out_aaag(x1, x2, x3, x4)) = x1 + x3   
POL(app28_in_gga(x1, x2)) = x1 + x2   
POL(app28_out_gga(x1, x2, x3)) = 1 + x3   

The following usable rules [FROCOS05] were oriented:

app18_in_aaag(.(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, T37)) → U1_aaag(X66, T37, app18_in_aaag(T37))
app28_in_gga([], T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59) → U2_gga(T57, T58, T59, app28_in_gga(T58, T59))
U1_aaag(X66, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U2_gga(T57, T58, T59, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GA(T69, app18_out_aaag(T76, T72, T77, T69)) → U6_GA(T69, app28_in_gga(T76, T77))
U6_GA(T69, app28_out_gga(T76, T77, T83)) → PERM38_IN_GA(T83)

The TRS R consists of the following rules:

app18_in_aaag(.(T31, X46)) → app18_out_aaag([], T31, X46, .(T31, X46))
app18_in_aaag(.(X66, T37)) → U1_aaag(X66, T37, app18_in_aaag(T37))
app28_in_gga([], T50) → app28_out_gga([], T50, T50)
app28_in_gga(.(T57, T58), T59) → U2_gga(T57, T58, T59, app28_in_gga(T58, T59))
U1_aaag(X66, T37, app18_out_aaag(X67, T38, X68, T37)) → app18_out_aaag(.(X66, X67), T38, X68, .(X66, T37))
U2_gga(T57, T58, T59, app28_out_gga(T58, T59, X101)) → app28_out_gga(.(T57, T58), T59, .(T57, X101))

The set Q consists of the following terms:

app18_in_aaag(x0)
app28_in_gga(x0, x1)
U1_aaag(x0, x1, x2)
U2_gga(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(113) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(114) TRUE