0 Prolog
↳1 PrologToPiTRSProof (⇐)
↳2 PiTRS
↳3 DependencyPairsProof (⇔)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 PiDP
↳8 UsableRulesProof (⇔)
↳9 PiDP
↳10 PiDPToQDPProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 PiDP
↳15 UsableRulesProof (⇔)
↳16 PiDP
↳17 PiDPToQDPProof (⇔)
↳18 QDP
↳19 MRRProof (⇔)
↳20 QDP
↳21 DependencyGraphProof (⇔)
↳22 TRUE
↳23 PiDP
↳24 UsableRulesProof (⇔)
↳25 PiDP
↳26 PiDPToQDPProof (⇐)
↳27 QDP
↳28 QDPSizeChangeProof (⇔)
↳29 TRUE
↳30 PiDP
↳31 UsableRulesProof (⇔)
↳32 PiDP
↳33 PiDPToQDPProof (⇐)
↳34 QDP
↳35 QDPSizeChangeProof (⇔)
↳36 TRUE
↳37 PiDP
↳38 UsableRulesProof (⇔)
↳39 PiDP
↳40 PrologToPiTRSProof (⇐)
↳41 PiTRS
↳42 DependencyPairsProof (⇔)
↳43 PiDP
↳44 DependencyGraphProof (⇔)
↳45 AND
↳46 PiDP
↳47 UsableRulesProof (⇔)
↳48 PiDP
↳49 PiDPToQDPProof (⇔)
↳50 QDP
↳51 QDPSizeChangeProof (⇔)
↳52 TRUE
↳53 PiDP
↳54 UsableRulesProof (⇔)
↳55 PiDP
↳56 PiDPToQDPProof (⇐)
↳57 QDP
↳58 UsableRulesReductionPairsProof (⇔)
↳59 QDP
↳60 MRRProof (⇔)
↳61 QDP
↳62 DependencyGraphProof (⇔)
↳63 TRUE
↳64 PiDP
↳65 UsableRulesProof (⇔)
↳66 PiDP
↳67 PiDPToQDPProof (⇐)
↳68 QDP
↳69 QDPSizeChangeProof (⇔)
↳70 TRUE
↳71 PiDP
↳72 UsableRulesProof (⇔)
↳73 PiDP
↳74 PiDPToQDPProof (⇐)
↳75 QDP
↳76 QDPSizeChangeProof (⇔)
↳77 TRUE
↳78 PiDP
↳79 UsableRulesProof (⇔)
↳80 PiDP
↳81 PiDPToQDPProof (⇐)
↳82 QDP
↳83 QDPSizeChangeProof (⇔)
↳84 TRUE
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
SS_IN_GG(Xs, Ys) → U1_GG(Xs, Ys, perm_in_gg(Xs, Ys))
SS_IN_GG(Xs, Ys) → PERM_IN_GG(Xs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
PERM_IN_GG(Xs, .(X, Ys)) → APP_IN_AAG(X1s, .(X, X2s), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U6_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GG(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → APP_IN_GGA(X1s, X2s, Zs)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U6_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_GG(Xs, X, Ys, perm_in_gg(Zs, Ys))
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GG(Zs, Ys)
U1_GG(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_GG(Xs, Ys, ordered_in_g(Ys))
U1_GG(Xs, Ys, perm_out_gg(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
SS_IN_GG(Xs, Ys) → U1_GG(Xs, Ys, perm_in_gg(Xs, Ys))
SS_IN_GG(Xs, Ys) → PERM_IN_GG(Xs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
PERM_IN_GG(Xs, .(X, Ys)) → APP_IN_AAG(X1s, .(X, X2s), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U6_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GG(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → APP_IN_GGA(X1s, X2s, Zs)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U6_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_GG(Xs, X, Ys, perm_in_gg(Zs, Ys))
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GG(Zs, Ys)
U1_GG(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_GG(Xs, Ys, ordered_in_g(Ys))
U1_GG(Xs, Ys, perm_out_gg(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
less_in_gg(x0, x1)
U9_gg(x0, x1, x2)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
POL(.(x1, x2)) = 1 + 2·x1 + x2
POL(0) = 0
POL(ORDERED_IN_G(x1)) = 2·x1
POL(U7_G(x1, x2, x3, x4)) = 2 + x1 + 2·x2 + 2·x3 + x4
POL(U9_gg(x1, x2, x3)) = 2·x1 + x2 + x3
POL(less_in_gg(x1, x2)) = 2·x1 + x2
POL(less_out_gg(x1, x2)) = x1 + x2
POL(s(x1)) = 2·x1
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
less_in_gg(x0, x1)
U9_gg(x0, x1, x2)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
APP_IN_GGA(.(X, Xs), Ys) → APP_IN_GGA(Xs, Ys)
From the DPs we obtained the following set of size-change graphs:
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
From the DPs we obtained the following set of size-change graphs:
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GG(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GG(Zs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GG(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GG(Zs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
SS_IN_GG(Xs, Ys) → U1_GG(Xs, Ys, perm_in_gg(Xs, Ys))
SS_IN_GG(Xs, Ys) → PERM_IN_GG(Xs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
PERM_IN_GG(Xs, .(X, Ys)) → APP_IN_AAG(X1s, .(X, X2s), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U6_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GG(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → APP_IN_GGA(X1s, X2s, Zs)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U6_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_GG(Xs, X, Ys, perm_in_gg(Zs, Ys))
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GG(Zs, Ys)
U1_GG(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_GG(Xs, Ys, ordered_in_g(Ys))
U1_GG(Xs, Ys, perm_out_gg(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
SS_IN_GG(Xs, Ys) → U1_GG(Xs, Ys, perm_in_gg(Xs, Ys))
SS_IN_GG(Xs, Ys) → PERM_IN_GG(Xs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
PERM_IN_GG(Xs, .(X, Ys)) → APP_IN_AAG(X1s, .(X, X2s), Xs)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U6_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GG(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → APP_IN_GGA(X1s, X2s, Zs)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → U6_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_GG(Xs, X, Ys, perm_in_gg(Zs, Ys))
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GG(Zs, Ys)
U1_GG(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_GG(Xs, Ys, ordered_in_g(Ys))
U1_GG(Xs, Ys, perm_out_gg(Xs, Ys)) → ORDERED_IN_G(Ys)
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U9_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → U8_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
U7_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg
less_in_gg(s(X), s(Y)) → U9_gg(less_in_gg(X, Y))
U9_gg(less_out_gg) → less_out_gg
less_in_gg(x0, x1)
U9_gg(x0)
Used ordering: POLO with Polynomial interpretation [POLO]:
less_in_gg(0, s(X2)) → less_out_gg
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(0) = 2
POL(ORDERED_IN_G(x1)) = 1 + x1
POL(U7_G(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U9_gg(x1)) = x1
POL(less_in_gg(x1, x2)) = x1 + x2
POL(less_out_gg) = 0
POL(s(x1)) = x1
U7_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(s(X), s(Y)) → U9_gg(less_in_gg(X, Y))
U9_gg(less_out_gg) → less_out_gg
less_in_gg(x0, x1)
U9_gg(x0)
U7_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
U9_gg(less_out_gg) → less_out_gg
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(ORDERED_IN_G(x1)) = 1 + x1
POL(U7_G(x1, x2, x3)) = 2·x1 + 2·x2 + x3
POL(U9_gg(x1)) = 2 + x1
POL(less_in_gg(x1, x2)) = x1 + x2
POL(less_out_gg) = 2
POL(s(x1)) = 1 + x1
ORDERED_IN_G(.(X, .(Y, Xs))) → U7_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(s(X), s(Y)) → U9_gg(less_in_gg(X, Y))
less_in_gg(x0, x1)
U9_gg(x0)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) → APP_IN_GGA(Xs, Ys, Zs)
APP_IN_GGA(.(X, Xs), Ys) → APP_IN_GGA(Xs, Ys)
From the DPs we obtained the following set of size-change graphs:
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
From the DPs we obtained the following set of size-change graphs:
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GG(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GG(Zs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
ss_in_gg(Xs, Ys) → U1_gg(Xs, Ys, perm_in_gg(Xs, Ys))
perm_in_gg([], []) → perm_out_gg([], [])
perm_in_gg(Xs, .(X, Ys)) → U3_gg(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_gg(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_gg(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U4_gg(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → U5_gg(Xs, X, Ys, perm_in_gg(Zs, Ys))
U5_gg(Xs, X, Ys, perm_out_gg(Zs, Ys)) → perm_out_gg(Xs, .(X, Ys))
U1_gg(Xs, Ys, perm_out_gg(Xs, Ys)) → U2_gg(Xs, Ys, ordered_in_g(Ys))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U7_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U9_gg(X, Y, less_in_gg(X, Y))
U9_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U7_g(X, Y, Xs, less_out_gg(X, s(Y))) → U8_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U8_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U2_gg(Xs, Ys, ordered_out_g(Ys)) → ss_out_gg(Xs, Ys)
U3_GG(Xs, X, Ys, app_out_aag(X1s, .(X, X2s), Xs)) → U4_GG(Xs, X, Ys, app_in_gga(X1s, X2s, Zs))
U4_GG(Xs, X, Ys, app_out_gga(X1s, X2s, Zs)) → PERM_IN_GG(Zs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Xs, X, Ys, app_in_aag(X1s, .(X, X2s), Xs))
app_in_gga([], X, X) → app_out_gga([], X, X)
app_in_gga(.(X, Xs), Ys, .(X, Zs)) → U6_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U6_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U6_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) → app_out_gga(.(X, Xs), Ys, .(X, Zs))
U6_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U3_GG(Ys, app_out_aag(X1s, .(X, X2s))) → U4_GG(Ys, app_in_gga(X1s, X2s))
U4_GG(Ys, app_out_gga(Zs)) → PERM_IN_GG(Zs, Ys)
PERM_IN_GG(Xs, .(X, Ys)) → U3_GG(Ys, app_in_aag(Xs))
app_in_gga([], X) → app_out_gga(X)
app_in_gga(.(X, Xs), Ys) → U6_gga(X, app_in_gga(Xs, Ys))
app_in_aag(X) → app_out_aag([], X)
app_in_aag(.(X, Zs)) → U6_aag(X, app_in_aag(Zs))
U6_gga(X, app_out_gga(Zs)) → app_out_gga(.(X, Zs))
U6_aag(X, app_out_aag(Xs, Ys)) → app_out_aag(.(X, Xs), Ys)
app_in_gga(x0, x1)
app_in_aag(x0)
U6_gga(x0, x1)
U6_aag(x0, x1)
From the DPs we obtained the following set of size-change graphs: