(0) Obligation:
Clauses:
reverse(X1s, X2s) :- reverse(X1s, [], X2s).
reverse([], Xs, Xs).
reverse(.(X, X1s), X2s, Ys) :- reverse(X1s, .(X, X2s), Ys).
Queries:
reverse(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reverse_in: (f,b)
reverse_in: (f,b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AG(X1s, X2s) → U1_AG(X1s, X2s, reverse_in_agg(X1s, [], X2s))
REVERSE_IN_AG(X1s, X2s) → REVERSE_IN_AGG(X1s, [], X2s)
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → U2_AGG(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → REVERSE_IN_AGG(X1s, .(X, X2s), Ys)
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
REVERSE_IN_AG(
x1,
x2) =
REVERSE_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
REVERSE_IN_AGG(
x1,
x2,
x3) =
REVERSE_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5) =
U2_AGG(
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AG(X1s, X2s) → U1_AG(X1s, X2s, reverse_in_agg(X1s, [], X2s))
REVERSE_IN_AG(X1s, X2s) → REVERSE_IN_AGG(X1s, [], X2s)
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → U2_AGG(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → REVERSE_IN_AGG(X1s, .(X, X2s), Ys)
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
REVERSE_IN_AG(
x1,
x2) =
REVERSE_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
REVERSE_IN_AGG(
x1,
x2,
x3) =
REVERSE_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5) =
U2_AGG(
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → REVERSE_IN_AGG(X1s, .(X, X2s), Ys)
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1)
REVERSE_IN_AGG(
x1,
x2,
x3) =
REVERSE_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → REVERSE_IN_AGG(X1s, .(X, X2s), Ys)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
REVERSE_IN_AGG(
x1,
x2,
x3) =
REVERSE_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(X2s, Ys) → REVERSE_IN_AGG(.(X2s), Ys)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REVERSE_IN_AGG(
X2s,
Ys) →
REVERSE_IN_AGG(
.(
X2s),
Ys) we obtained the following new rules [LPAR04]:
REVERSE_IN_AGG(.(z0), z1) → REVERSE_IN_AGG(.(.(z0)), z1)
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(z0), z1) → REVERSE_IN_AGG(.(.(z0)), z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REVERSE_IN_AGG(
X2s,
Ys) →
REVERSE_IN_AGG(
.(
X2s),
Ys) we obtained the following new rules [LPAR04]:
REVERSE_IN_AGG(.(z0), z1) → REVERSE_IN_AGG(.(.(z0)), z1)
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(z0), z1) → REVERSE_IN_AGG(.(.(z0)), z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(15) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REVERSE_IN_AGG(
.(
z0),
z1) →
REVERSE_IN_AGG(
.(
.(
z0)),
z1) we obtained the following new rules [LPAR04]:
REVERSE_IN_AGG(.(.(z0)), z1) → REVERSE_IN_AGG(.(.(.(z0))), z1)
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(.(z0)), z1) → REVERSE_IN_AGG(.(.(.(z0))), z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(17) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
REVERSE_IN_AGG(
.(
.(
z0)),
z1) evaluates to t =
REVERSE_IN_AGG(
.(
.(
.(
z0))),
z1)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [z0 / .(z0)]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from REVERSE_IN_AGG(.(.(z0)), z1) to REVERSE_IN_AGG(.(.(.(z0))), z1).
(18) FALSE
(19) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
reverse_in: (f,b)
reverse_in: (f,b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1,
x2,
x3)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x3,
x4,
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(20) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1,
x2,
x3)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x3,
x4,
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
(21) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AG(X1s, X2s) → U1_AG(X1s, X2s, reverse_in_agg(X1s, [], X2s))
REVERSE_IN_AG(X1s, X2s) → REVERSE_IN_AGG(X1s, [], X2s)
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → U2_AGG(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → REVERSE_IN_AGG(X1s, .(X, X2s), Ys)
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1,
x2,
x3)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x3,
x4,
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
REVERSE_IN_AG(
x1,
x2) =
REVERSE_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
REVERSE_IN_AGG(
x1,
x2,
x3) =
REVERSE_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5) =
U2_AGG(
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AG(X1s, X2s) → U1_AG(X1s, X2s, reverse_in_agg(X1s, [], X2s))
REVERSE_IN_AG(X1s, X2s) → REVERSE_IN_AGG(X1s, [], X2s)
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → U2_AGG(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → REVERSE_IN_AGG(X1s, .(X, X2s), Ys)
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1,
x2,
x3)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x3,
x4,
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
REVERSE_IN_AG(
x1,
x2) =
REVERSE_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
REVERSE_IN_AGG(
x1,
x2,
x3) =
REVERSE_IN_AGG(
x2,
x3)
U2_AGG(
x1,
x2,
x3,
x4,
x5) =
U2_AGG(
x3,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(24) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → REVERSE_IN_AGG(X1s, .(X, X2s), Ys)
The TRS R consists of the following rules:
reverse_in_ag(X1s, X2s) → U1_ag(X1s, X2s, reverse_in_agg(X1s, [], X2s))
reverse_in_agg([], Xs, Xs) → reverse_out_agg([], Xs, Xs)
reverse_in_agg(.(X, X1s), X2s, Ys) → U2_agg(X, X1s, X2s, Ys, reverse_in_agg(X1s, .(X, X2s), Ys))
U2_agg(X, X1s, X2s, Ys, reverse_out_agg(X1s, .(X, X2s), Ys)) → reverse_out_agg(.(X, X1s), X2s, Ys)
U1_ag(X1s, X2s, reverse_out_agg(X1s, [], X2s)) → reverse_out_ag(X1s, X2s)
The argument filtering Pi contains the following mapping:
reverse_in_ag(
x1,
x2) =
reverse_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
reverse_in_agg(
x1,
x2,
x3) =
reverse_in_agg(
x2,
x3)
reverse_out_agg(
x1,
x2,
x3) =
reverse_out_agg(
x1,
x2,
x3)
U2_agg(
x1,
x2,
x3,
x4,
x5) =
U2_agg(
x3,
x4,
x5)
.(
x1,
x2) =
.(
x2)
[] =
[]
reverse_out_ag(
x1,
x2) =
reverse_out_ag(
x1,
x2)
REVERSE_IN_AGG(
x1,
x2,
x3) =
REVERSE_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(25) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(X, X1s), X2s, Ys) → REVERSE_IN_AGG(X1s, .(X, X2s), Ys)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
REVERSE_IN_AGG(
x1,
x2,
x3) =
REVERSE_IN_AGG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(27) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(X2s, Ys) → REVERSE_IN_AGG(.(X2s), Ys)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(29) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REVERSE_IN_AGG(
X2s,
Ys) →
REVERSE_IN_AGG(
.(
X2s),
Ys) we obtained the following new rules [LPAR04]:
REVERSE_IN_AGG(.(z0), z1) → REVERSE_IN_AGG(.(.(z0)), z1)
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(z0), z1) → REVERSE_IN_AGG(.(.(z0)), z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(31) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REVERSE_IN_AGG(
X2s,
Ys) →
REVERSE_IN_AGG(
.(
X2s),
Ys) we obtained the following new rules [LPAR04]:
REVERSE_IN_AGG(.(z0), z1) → REVERSE_IN_AGG(.(.(z0)), z1)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(z0), z1) → REVERSE_IN_AGG(.(.(z0)), z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(33) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REVERSE_IN_AGG(
.(
z0),
z1) →
REVERSE_IN_AGG(
.(
.(
z0)),
z1) we obtained the following new rules [LPAR04]:
REVERSE_IN_AGG(.(.(z0)), z1) → REVERSE_IN_AGG(.(.(.(z0))), z1)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE_IN_AGG(.(.(z0)), z1) → REVERSE_IN_AGG(.(.(.(z0))), z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(35) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
REVERSE_IN_AGG(
.(
.(
z0)),
z1) evaluates to t =
REVERSE_IN_AGG(
.(
.(
.(
z0))),
z1)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [z0 / .(z0)]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from REVERSE_IN_AGG(.(.(z0)), z1) to REVERSE_IN_AGG(.(.(.(z0))), z1).
(36) FALSE