(0) Obligation:
Clauses:
prefix(Xs, Ys) :- app(Xs, X1, Ys).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
Queries:
prefix(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
prefix_in: (f,b)
app_in: (f,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
PREFIX_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, app_in_aag(Xs, X1, Ys))
PREFIX_IN_AG(Xs, Ys) → APP_IN_AAG(Xs, X1, Ys)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U2_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1)
PREFIX_IN_AG(
x1,
x2) =
PREFIX_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
APP_IN_AAG(
x1,
x2,
x3) =
APP_IN_AAG(
x3)
U2_AAG(
x1,
x2,
x3,
x4,
x5) =
U2_AAG(
x1,
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PREFIX_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, app_in_aag(Xs, X1, Ys))
PREFIX_IN_AG(Xs, Ys) → APP_IN_AAG(Xs, X1, Ys)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U2_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1)
PREFIX_IN_AG(
x1,
x2) =
PREFIX_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
APP_IN_AAG(
x1,
x2,
x3) =
APP_IN_AAG(
x3)
U2_AAG(
x1,
x2,
x3,
x4,
x5) =
U2_AAG(
x1,
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1)
APP_IN_AAG(
x1,
x2,
x3) =
APP_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APP_IN_AAG(
x1,
x2,
x3) =
APP_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
The graph contains the following edges 1 > 1
(12) TRUE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
prefix_in: (f,b)
app_in: (f,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1,
x2)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
PREFIX_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, app_in_aag(Xs, X1, Ys))
PREFIX_IN_AG(Xs, Ys) → APP_IN_AAG(Xs, X1, Ys)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U2_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1,
x2)
PREFIX_IN_AG(
x1,
x2) =
PREFIX_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
APP_IN_AAG(
x1,
x2,
x3) =
APP_IN_AAG(
x3)
U2_AAG(
x1,
x2,
x3,
x4,
x5) =
U2_AAG(
x1,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
PREFIX_IN_AG(Xs, Ys) → U1_AG(Xs, Ys, app_in_aag(Xs, X1, Ys))
PREFIX_IN_AG(Xs, Ys) → APP_IN_AAG(Xs, X1, Ys)
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U2_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1,
x2)
PREFIX_IN_AG(
x1,
x2) =
PREFIX_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
APP_IN_AAG(
x1,
x2,
x3) =
APP_IN_AAG(
x3)
U2_AAG(
x1,
x2,
x3,
x4,
x5) =
U2_AAG(
x1,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
The TRS R consists of the following rules:
prefix_in_ag(Xs, Ys) → U1_ag(Xs, Ys, app_in_aag(Xs, X1, Ys))
app_in_aag([], X, X) → app_out_aag([], X, X)
app_in_aag(.(X, Xs), Ys, .(X, Zs)) → U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs))
U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) → app_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_ag(Xs, Ys, app_out_aag(Xs, X1, Ys)) → prefix_out_ag(Xs, Ys)
The argument filtering Pi contains the following mapping:
prefix_in_ag(
x1,
x2) =
prefix_in_ag(
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
app_in_aag(
x1,
x2,
x3) =
app_in_aag(
x3)
app_out_aag(
x1,
x2,
x3) =
app_out_aag(
x1,
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_aag(
x1,
x2,
x3,
x4,
x5) =
U2_aag(
x1,
x4,
x5)
prefix_out_ag(
x1,
x2) =
prefix_out_ag(
x1,
x2)
APP_IN_AAG(
x1,
x2,
x3) =
APP_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APP_IN_AAG(Xs, Ys, Zs)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x1,
x2)
APP_IN_AAG(
x1,
x2,
x3) =
APP_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP_IN_AAG(.(X, Zs)) → APP_IN_AAG(Zs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.