0 Prolog
↳1 PrologToPiTRSProof (⇐)
↳2 PiTRS
↳3 DependencyPairsProof (⇔)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 PiDP
↳8 UsableRulesProof (⇔)
↳9 PiDP
↳10 PiDPToQDPProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 PiDP
↳15 UsableRulesProof (⇔)
↳16 PiDP
↳17 PiDPToQDPProof (⇐)
↳18 QDP
↳19 UsableRulesReductionPairsProof (⇔)
↳20 QDP
↳21 PrologToPiTRSProof (⇐)
↳22 PiTRS
↳23 DependencyPairsProof (⇔)
↳24 PiDP
↳25 DependencyGraphProof (⇔)
↳26 AND
↳27 PiDP
↳28 UsableRulesProof (⇔)
↳29 PiDP
↳30 PiDPToQDPProof (⇔)
↳31 QDP
↳32 QDPSizeChangeProof (⇔)
↳33 TRUE
↳34 PiDP
↳35 UsableRulesProof (⇔)
↳36 PiDP
↳37 PiDPToQDPProof (⇔)
↳38 QDP
↳39 MRRProof (⇔)
↳40 QDP
↳41 DependencyGraphProof (⇔)
↳42 TRUE
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U3_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U3_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg
less_in_gg(s(X), s(Y)) → U3_gg(less_in_gg(X, Y))
U3_gg(less_out_gg) → less_out_gg
less_in_gg(x0, x1)
U3_gg(x0)
Used ordering: POLO with Polynomial interpretation [POLO]:
less_in_gg(0, s(X2)) → less_out_gg
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(0) = 2
POL(ORDERED_IN_G(x1)) = 1 + x1
POL(U1_G(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U3_gg(x1)) = x1
POL(less_in_gg(x1, x2)) = x1 + x2
POL(less_out_gg) = 0
POL(s(x1)) = x1
U1_G(Y, Xs, less_out_gg) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(s(X), s(Y)) → U3_gg(less_in_gg(X, Y))
U3_gg(less_out_gg) → less_out_gg
less_in_gg(x0, x1)
U3_gg(x0)
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U3_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
ORDERED_IN_G(.(X, .(Y, Xs))) → LESS_IN_GG(X, s(Y))
LESS_IN_GG(s(X), s(Y)) → U3_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
From the DPs we obtained the following set of size-change graphs:
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
ordered_in_g([]) → ordered_out_g([])
ordered_in_g(.(X1, [])) → ordered_out_g(.(X1, []))
ordered_in_g(.(X, .(Y, Xs))) → U1_g(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_g(X, Y, Xs, less_out_gg(X, s(Y))) → U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs)))
U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) → ordered_out_g(.(X, .(Y, Xs)))
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
less_in_gg(x0, x1)
U3_gg(x0, x1, x2)
ORDERED_IN_G(.(X, .(Y, Xs))) → U1_G(X, Y, Xs, less_in_gg(X, s(Y)))
POL(.(x1, x2)) = 1 + 2·x1 + x2
POL(0) = 0
POL(ORDERED_IN_G(x1)) = 2·x1
POL(U1_G(x1, x2, x3, x4)) = 2 + x1 + 2·x2 + 2·x3 + x4
POL(U3_gg(x1, x2, x3)) = 2·x1 + x2 + x3
POL(less_in_gg(x1, x2)) = 2·x1 + x2
POL(less_out_gg(x1, x2)) = x1 + x2
POL(s(x1)) = 2·x1
U1_G(X, Y, Xs, less_out_gg(X, s(Y))) → ORDERED_IN_G(.(Y, Xs))
less_in_gg(0, s(X2)) → less_out_gg(0, s(X2))
less_in_gg(s(X), s(Y)) → U3_gg(X, Y, less_in_gg(X, Y))
U3_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
less_in_gg(x0, x1)
U3_gg(x0, x1, x2)