(0) Obligation:
Clauses:
mult(X1, 0, 0).
mult(X, s(Y), Z) :- ','(mult(X, Y, W), sum(W, X, Z)).
sum(X, 0, X).
sum(X, s(Y), s(Z)) :- sum(X, Y, Z).
Queries:
mult(g,g,a).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
sum12(s(T23), s(T25)) :- sum12(T23, T25).
mult24(T46, s(T47), X86) :- mult24(T46, T47, X85).
mult24(T46, s(T47), X86) :- ','(multc24(T46, T47, T50), sum35(T50, T46, X86)).
sum35(T64, s(T65), s(X113)) :- sum35(T64, T65, X113).
sum45(T86, s(T87), s(T89)) :- sum45(T86, T87, T89).
mult1(T18, s(0), T13) :- sum12(T18, T13).
mult1(T30, s(s(T31)), T13) :- mult24(T30, T31, X58).
mult1(T30, s(s(T31)), T13) :- ','(multc24(T30, T31, T34), sum35(T34, T30, X59)).
mult1(T30, s(s(T31)), T13) :- ','(multc24(T30, T31, T34), ','(sumc35(T34, T30, T70), sum45(T70, T30, T13))).
Clauses:
sumc12(0, 0).
sumc12(s(T23), s(T25)) :- sumc12(T23, T25).
multc24(T41, 0, 0).
multc24(T46, s(T47), X86) :- ','(multc24(T46, T47, T50), sumc35(T50, T46, X86)).
sumc35(T59, 0, T59).
sumc35(T64, s(T65), s(X113)) :- sumc35(T64, T65, X113).
sumc45(T79, 0, T79).
sumc45(T86, s(T87), s(T89)) :- sumc45(T86, T87, T89).
Afs:
mult1(x1, x2, x3) = mult1(x1, x2)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
mult1_in: (b,b,f)
sum12_in: (b,f)
mult24_in: (b,b,f)
multc24_in: (b,b,f)
sumc35_in: (b,b,f)
sum35_in: (b,b,f)
sum45_in: (b,b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
MULT1_IN_GGA(T18, s(0), T13) → U7_GGA(T18, T13, sum12_in_ga(T18, T13))
MULT1_IN_GGA(T18, s(0), T13) → SUM12_IN_GA(T18, T13)
SUM12_IN_GA(s(T23), s(T25)) → U1_GA(T23, T25, sum12_in_ga(T23, T25))
SUM12_IN_GA(s(T23), s(T25)) → SUM12_IN_GA(T23, T25)
MULT1_IN_GGA(T30, s(s(T31)), T13) → U8_GGA(T30, T31, T13, mult24_in_gga(T30, T31, X58))
MULT1_IN_GGA(T30, s(s(T31)), T13) → MULT24_IN_GGA(T30, T31, X58)
MULT24_IN_GGA(T46, s(T47), X86) → U2_GGA(T46, T47, X86, mult24_in_gga(T46, T47, X85))
MULT24_IN_GGA(T46, s(T47), X86) → MULT24_IN_GGA(T46, T47, X85)
MULT24_IN_GGA(T46, s(T47), X86) → U3_GGA(T46, T47, X86, multc24_in_gga(T46, T47, T50))
U3_GGA(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → U4_GGA(T46, T47, X86, sum35_in_gga(T50, T46, X86))
U3_GGA(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → SUM35_IN_GGA(T50, T46, X86)
SUM35_IN_GGA(T64, s(T65), s(X113)) → U5_GGA(T64, T65, X113, sum35_in_gga(T64, T65, X113))
SUM35_IN_GGA(T64, s(T65), s(X113)) → SUM35_IN_GGA(T64, T65, X113)
MULT1_IN_GGA(T30, s(s(T31)), T13) → U9_GGA(T30, T31, T13, multc24_in_gga(T30, T31, T34))
U9_GGA(T30, T31, T13, multc24_out_gga(T30, T31, T34)) → U10_GGA(T30, T31, T13, sum35_in_gga(T34, T30, X59))
U9_GGA(T30, T31, T13, multc24_out_gga(T30, T31, T34)) → SUM35_IN_GGA(T34, T30, X59)
U9_GGA(T30, T31, T13, multc24_out_gga(T30, T31, T34)) → U11_GGA(T30, T31, T13, sumc35_in_gga(T34, T30, T70))
U11_GGA(T30, T31, T13, sumc35_out_gga(T34, T30, T70)) → U12_GGA(T30, T31, T13, sum45_in_gga(T70, T30, T13))
U11_GGA(T30, T31, T13, sumc35_out_gga(T34, T30, T70)) → SUM45_IN_GGA(T70, T30, T13)
SUM45_IN_GGA(T86, s(T87), s(T89)) → U6_GGA(T86, T87, T89, sum45_in_gga(T86, T87, T89))
SUM45_IN_GGA(T86, s(T87), s(T89)) → SUM45_IN_GGA(T86, T87, T89)
The TRS R consists of the following rules:
multc24_in_gga(T41, 0, 0) → multc24_out_gga(T41, 0, 0)
multc24_in_gga(T46, s(T47), X86) → U15_gga(T46, T47, X86, multc24_in_gga(T46, T47, T50))
U15_gga(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → U16_gga(T46, T47, X86, sumc35_in_gga(T50, T46, X86))
sumc35_in_gga(T59, 0, T59) → sumc35_out_gga(T59, 0, T59)
sumc35_in_gga(T64, s(T65), s(X113)) → U17_gga(T64, T65, X113, sumc35_in_gga(T64, T65, X113))
U17_gga(T64, T65, X113, sumc35_out_gga(T64, T65, X113)) → sumc35_out_gga(T64, s(T65), s(X113))
U16_gga(T46, T47, X86, sumc35_out_gga(T50, T46, X86)) → multc24_out_gga(T46, s(T47), X86)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
sum12_in_ga(
x1,
x2) =
sum12_in_ga(
x1)
mult24_in_gga(
x1,
x2,
x3) =
mult24_in_gga(
x1,
x2)
multc24_in_gga(
x1,
x2,
x3) =
multc24_in_gga(
x1,
x2)
multc24_out_gga(
x1,
x2,
x3) =
multc24_out_gga(
x1,
x2,
x3)
U15_gga(
x1,
x2,
x3,
x4) =
U15_gga(
x1,
x2,
x4)
U16_gga(
x1,
x2,
x3,
x4) =
U16_gga(
x1,
x2,
x4)
sumc35_in_gga(
x1,
x2,
x3) =
sumc35_in_gga(
x1,
x2)
sumc35_out_gga(
x1,
x2,
x3) =
sumc35_out_gga(
x1,
x2,
x3)
U17_gga(
x1,
x2,
x3,
x4) =
U17_gga(
x1,
x2,
x4)
sum35_in_gga(
x1,
x2,
x3) =
sum35_in_gga(
x1,
x2)
sum45_in_gga(
x1,
x2,
x3) =
sum45_in_gga(
x1,
x2)
MULT1_IN_GGA(
x1,
x2,
x3) =
MULT1_IN_GGA(
x1,
x2)
U7_GGA(
x1,
x2,
x3) =
U7_GGA(
x1,
x3)
SUM12_IN_GA(
x1,
x2) =
SUM12_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
MULT24_IN_GGA(
x1,
x2,
x3) =
MULT24_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
SUM35_IN_GGA(
x1,
x2,
x3) =
SUM35_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
U9_GGA(
x1,
x2,
x3,
x4) =
U9_GGA(
x1,
x2,
x4)
U10_GGA(
x1,
x2,
x3,
x4) =
U10_GGA(
x1,
x2,
x4)
U11_GGA(
x1,
x2,
x3,
x4) =
U11_GGA(
x1,
x2,
x4)
U12_GGA(
x1,
x2,
x3,
x4) =
U12_GGA(
x1,
x2,
x4)
SUM45_IN_GGA(
x1,
x2,
x3) =
SUM45_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULT1_IN_GGA(T18, s(0), T13) → U7_GGA(T18, T13, sum12_in_ga(T18, T13))
MULT1_IN_GGA(T18, s(0), T13) → SUM12_IN_GA(T18, T13)
SUM12_IN_GA(s(T23), s(T25)) → U1_GA(T23, T25, sum12_in_ga(T23, T25))
SUM12_IN_GA(s(T23), s(T25)) → SUM12_IN_GA(T23, T25)
MULT1_IN_GGA(T30, s(s(T31)), T13) → U8_GGA(T30, T31, T13, mult24_in_gga(T30, T31, X58))
MULT1_IN_GGA(T30, s(s(T31)), T13) → MULT24_IN_GGA(T30, T31, X58)
MULT24_IN_GGA(T46, s(T47), X86) → U2_GGA(T46, T47, X86, mult24_in_gga(T46, T47, X85))
MULT24_IN_GGA(T46, s(T47), X86) → MULT24_IN_GGA(T46, T47, X85)
MULT24_IN_GGA(T46, s(T47), X86) → U3_GGA(T46, T47, X86, multc24_in_gga(T46, T47, T50))
U3_GGA(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → U4_GGA(T46, T47, X86, sum35_in_gga(T50, T46, X86))
U3_GGA(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → SUM35_IN_GGA(T50, T46, X86)
SUM35_IN_GGA(T64, s(T65), s(X113)) → U5_GGA(T64, T65, X113, sum35_in_gga(T64, T65, X113))
SUM35_IN_GGA(T64, s(T65), s(X113)) → SUM35_IN_GGA(T64, T65, X113)
MULT1_IN_GGA(T30, s(s(T31)), T13) → U9_GGA(T30, T31, T13, multc24_in_gga(T30, T31, T34))
U9_GGA(T30, T31, T13, multc24_out_gga(T30, T31, T34)) → U10_GGA(T30, T31, T13, sum35_in_gga(T34, T30, X59))
U9_GGA(T30, T31, T13, multc24_out_gga(T30, T31, T34)) → SUM35_IN_GGA(T34, T30, X59)
U9_GGA(T30, T31, T13, multc24_out_gga(T30, T31, T34)) → U11_GGA(T30, T31, T13, sumc35_in_gga(T34, T30, T70))
U11_GGA(T30, T31, T13, sumc35_out_gga(T34, T30, T70)) → U12_GGA(T30, T31, T13, sum45_in_gga(T70, T30, T13))
U11_GGA(T30, T31, T13, sumc35_out_gga(T34, T30, T70)) → SUM45_IN_GGA(T70, T30, T13)
SUM45_IN_GGA(T86, s(T87), s(T89)) → U6_GGA(T86, T87, T89, sum45_in_gga(T86, T87, T89))
SUM45_IN_GGA(T86, s(T87), s(T89)) → SUM45_IN_GGA(T86, T87, T89)
The TRS R consists of the following rules:
multc24_in_gga(T41, 0, 0) → multc24_out_gga(T41, 0, 0)
multc24_in_gga(T46, s(T47), X86) → U15_gga(T46, T47, X86, multc24_in_gga(T46, T47, T50))
U15_gga(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → U16_gga(T46, T47, X86, sumc35_in_gga(T50, T46, X86))
sumc35_in_gga(T59, 0, T59) → sumc35_out_gga(T59, 0, T59)
sumc35_in_gga(T64, s(T65), s(X113)) → U17_gga(T64, T65, X113, sumc35_in_gga(T64, T65, X113))
U17_gga(T64, T65, X113, sumc35_out_gga(T64, T65, X113)) → sumc35_out_gga(T64, s(T65), s(X113))
U16_gga(T46, T47, X86, sumc35_out_gga(T50, T46, X86)) → multc24_out_gga(T46, s(T47), X86)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
sum12_in_ga(
x1,
x2) =
sum12_in_ga(
x1)
mult24_in_gga(
x1,
x2,
x3) =
mult24_in_gga(
x1,
x2)
multc24_in_gga(
x1,
x2,
x3) =
multc24_in_gga(
x1,
x2)
multc24_out_gga(
x1,
x2,
x3) =
multc24_out_gga(
x1,
x2,
x3)
U15_gga(
x1,
x2,
x3,
x4) =
U15_gga(
x1,
x2,
x4)
U16_gga(
x1,
x2,
x3,
x4) =
U16_gga(
x1,
x2,
x4)
sumc35_in_gga(
x1,
x2,
x3) =
sumc35_in_gga(
x1,
x2)
sumc35_out_gga(
x1,
x2,
x3) =
sumc35_out_gga(
x1,
x2,
x3)
U17_gga(
x1,
x2,
x3,
x4) =
U17_gga(
x1,
x2,
x4)
sum35_in_gga(
x1,
x2,
x3) =
sum35_in_gga(
x1,
x2)
sum45_in_gga(
x1,
x2,
x3) =
sum45_in_gga(
x1,
x2)
MULT1_IN_GGA(
x1,
x2,
x3) =
MULT1_IN_GGA(
x1,
x2)
U7_GGA(
x1,
x2,
x3) =
U7_GGA(
x1,
x3)
SUM12_IN_GA(
x1,
x2) =
SUM12_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
MULT24_IN_GGA(
x1,
x2,
x3) =
MULT24_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
SUM35_IN_GGA(
x1,
x2,
x3) =
SUM35_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
U9_GGA(
x1,
x2,
x3,
x4) =
U9_GGA(
x1,
x2,
x4)
U10_GGA(
x1,
x2,
x3,
x4) =
U10_GGA(
x1,
x2,
x4)
U11_GGA(
x1,
x2,
x3,
x4) =
U11_GGA(
x1,
x2,
x4)
U12_GGA(
x1,
x2,
x3,
x4) =
U12_GGA(
x1,
x2,
x4)
SUM45_IN_GGA(
x1,
x2,
x3) =
SUM45_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 17 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUM45_IN_GGA(T86, s(T87), s(T89)) → SUM45_IN_GGA(T86, T87, T89)
The TRS R consists of the following rules:
multc24_in_gga(T41, 0, 0) → multc24_out_gga(T41, 0, 0)
multc24_in_gga(T46, s(T47), X86) → U15_gga(T46, T47, X86, multc24_in_gga(T46, T47, T50))
U15_gga(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → U16_gga(T46, T47, X86, sumc35_in_gga(T50, T46, X86))
sumc35_in_gga(T59, 0, T59) → sumc35_out_gga(T59, 0, T59)
sumc35_in_gga(T64, s(T65), s(X113)) → U17_gga(T64, T65, X113, sumc35_in_gga(T64, T65, X113))
U17_gga(T64, T65, X113, sumc35_out_gga(T64, T65, X113)) → sumc35_out_gga(T64, s(T65), s(X113))
U16_gga(T46, T47, X86, sumc35_out_gga(T50, T46, X86)) → multc24_out_gga(T46, s(T47), X86)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
multc24_in_gga(
x1,
x2,
x3) =
multc24_in_gga(
x1,
x2)
multc24_out_gga(
x1,
x2,
x3) =
multc24_out_gga(
x1,
x2,
x3)
U15_gga(
x1,
x2,
x3,
x4) =
U15_gga(
x1,
x2,
x4)
U16_gga(
x1,
x2,
x3,
x4) =
U16_gga(
x1,
x2,
x4)
sumc35_in_gga(
x1,
x2,
x3) =
sumc35_in_gga(
x1,
x2)
sumc35_out_gga(
x1,
x2,
x3) =
sumc35_out_gga(
x1,
x2,
x3)
U17_gga(
x1,
x2,
x3,
x4) =
U17_gga(
x1,
x2,
x4)
SUM45_IN_GGA(
x1,
x2,
x3) =
SUM45_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUM45_IN_GGA(T86, s(T87), s(T89)) → SUM45_IN_GGA(T86, T87, T89)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
SUM45_IN_GGA(
x1,
x2,
x3) =
SUM45_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUM45_IN_GGA(T86, s(T87)) → SUM45_IN_GGA(T86, T87)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SUM45_IN_GGA(T86, s(T87)) → SUM45_IN_GGA(T86, T87)
The graph contains the following edges 1 >= 1, 2 > 2
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUM35_IN_GGA(T64, s(T65), s(X113)) → SUM35_IN_GGA(T64, T65, X113)
The TRS R consists of the following rules:
multc24_in_gga(T41, 0, 0) → multc24_out_gga(T41, 0, 0)
multc24_in_gga(T46, s(T47), X86) → U15_gga(T46, T47, X86, multc24_in_gga(T46, T47, T50))
U15_gga(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → U16_gga(T46, T47, X86, sumc35_in_gga(T50, T46, X86))
sumc35_in_gga(T59, 0, T59) → sumc35_out_gga(T59, 0, T59)
sumc35_in_gga(T64, s(T65), s(X113)) → U17_gga(T64, T65, X113, sumc35_in_gga(T64, T65, X113))
U17_gga(T64, T65, X113, sumc35_out_gga(T64, T65, X113)) → sumc35_out_gga(T64, s(T65), s(X113))
U16_gga(T46, T47, X86, sumc35_out_gga(T50, T46, X86)) → multc24_out_gga(T46, s(T47), X86)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
multc24_in_gga(
x1,
x2,
x3) =
multc24_in_gga(
x1,
x2)
multc24_out_gga(
x1,
x2,
x3) =
multc24_out_gga(
x1,
x2,
x3)
U15_gga(
x1,
x2,
x3,
x4) =
U15_gga(
x1,
x2,
x4)
U16_gga(
x1,
x2,
x3,
x4) =
U16_gga(
x1,
x2,
x4)
sumc35_in_gga(
x1,
x2,
x3) =
sumc35_in_gga(
x1,
x2)
sumc35_out_gga(
x1,
x2,
x3) =
sumc35_out_gga(
x1,
x2,
x3)
U17_gga(
x1,
x2,
x3,
x4) =
U17_gga(
x1,
x2,
x4)
SUM35_IN_GGA(
x1,
x2,
x3) =
SUM35_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUM35_IN_GGA(T64, s(T65), s(X113)) → SUM35_IN_GGA(T64, T65, X113)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
SUM35_IN_GGA(
x1,
x2,
x3) =
SUM35_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUM35_IN_GGA(T64, s(T65)) → SUM35_IN_GGA(T64, T65)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SUM35_IN_GGA(T64, s(T65)) → SUM35_IN_GGA(T64, T65)
The graph contains the following edges 1 >= 1, 2 > 2
(20) YES
(21) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULT24_IN_GGA(T46, s(T47), X86) → MULT24_IN_GGA(T46, T47, X85)
The TRS R consists of the following rules:
multc24_in_gga(T41, 0, 0) → multc24_out_gga(T41, 0, 0)
multc24_in_gga(T46, s(T47), X86) → U15_gga(T46, T47, X86, multc24_in_gga(T46, T47, T50))
U15_gga(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → U16_gga(T46, T47, X86, sumc35_in_gga(T50, T46, X86))
sumc35_in_gga(T59, 0, T59) → sumc35_out_gga(T59, 0, T59)
sumc35_in_gga(T64, s(T65), s(X113)) → U17_gga(T64, T65, X113, sumc35_in_gga(T64, T65, X113))
U17_gga(T64, T65, X113, sumc35_out_gga(T64, T65, X113)) → sumc35_out_gga(T64, s(T65), s(X113))
U16_gga(T46, T47, X86, sumc35_out_gga(T50, T46, X86)) → multc24_out_gga(T46, s(T47), X86)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
multc24_in_gga(
x1,
x2,
x3) =
multc24_in_gga(
x1,
x2)
multc24_out_gga(
x1,
x2,
x3) =
multc24_out_gga(
x1,
x2,
x3)
U15_gga(
x1,
x2,
x3,
x4) =
U15_gga(
x1,
x2,
x4)
U16_gga(
x1,
x2,
x3,
x4) =
U16_gga(
x1,
x2,
x4)
sumc35_in_gga(
x1,
x2,
x3) =
sumc35_in_gga(
x1,
x2)
sumc35_out_gga(
x1,
x2,
x3) =
sumc35_out_gga(
x1,
x2,
x3)
U17_gga(
x1,
x2,
x3,
x4) =
U17_gga(
x1,
x2,
x4)
MULT24_IN_GGA(
x1,
x2,
x3) =
MULT24_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(22) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(23) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MULT24_IN_GGA(T46, s(T47), X86) → MULT24_IN_GGA(T46, T47, X85)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
MULT24_IN_GGA(
x1,
x2,
x3) =
MULT24_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(24) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MULT24_IN_GGA(T46, s(T47)) → MULT24_IN_GGA(T46, T47)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MULT24_IN_GGA(T46, s(T47)) → MULT24_IN_GGA(T46, T47)
The graph contains the following edges 1 >= 1, 2 > 2
(27) YES
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUM12_IN_GA(s(T23), s(T25)) → SUM12_IN_GA(T23, T25)
The TRS R consists of the following rules:
multc24_in_gga(T41, 0, 0) → multc24_out_gga(T41, 0, 0)
multc24_in_gga(T46, s(T47), X86) → U15_gga(T46, T47, X86, multc24_in_gga(T46, T47, T50))
U15_gga(T46, T47, X86, multc24_out_gga(T46, T47, T50)) → U16_gga(T46, T47, X86, sumc35_in_gga(T50, T46, X86))
sumc35_in_gga(T59, 0, T59) → sumc35_out_gga(T59, 0, T59)
sumc35_in_gga(T64, s(T65), s(X113)) → U17_gga(T64, T65, X113, sumc35_in_gga(T64, T65, X113))
U17_gga(T64, T65, X113, sumc35_out_gga(T64, T65, X113)) → sumc35_out_gga(T64, s(T65), s(X113))
U16_gga(T46, T47, X86, sumc35_out_gga(T50, T46, X86)) → multc24_out_gga(T46, s(T47), X86)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
multc24_in_gga(
x1,
x2,
x3) =
multc24_in_gga(
x1,
x2)
multc24_out_gga(
x1,
x2,
x3) =
multc24_out_gga(
x1,
x2,
x3)
U15_gga(
x1,
x2,
x3,
x4) =
U15_gga(
x1,
x2,
x4)
U16_gga(
x1,
x2,
x3,
x4) =
U16_gga(
x1,
x2,
x4)
sumc35_in_gga(
x1,
x2,
x3) =
sumc35_in_gga(
x1,
x2)
sumc35_out_gga(
x1,
x2,
x3) =
sumc35_out_gga(
x1,
x2,
x3)
U17_gga(
x1,
x2,
x3,
x4) =
U17_gga(
x1,
x2,
x4)
SUM12_IN_GA(
x1,
x2) =
SUM12_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(29) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(30) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
SUM12_IN_GA(s(T23), s(T25)) → SUM12_IN_GA(T23, T25)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
SUM12_IN_GA(
x1,
x2) =
SUM12_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(31) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SUM12_IN_GA(s(T23)) → SUM12_IN_GA(T23)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- SUM12_IN_GA(s(T23)) → SUM12_IN_GA(T23)
The graph contains the following edges 1 > 1
(34) YES