(0) Obligation:
Clauses:
minimum(tree(X, void, X1), X).
minimum(tree(X2, Left, X3), X) :- minimum(Left, X).
Queries:
minimum(a,g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
minimum1(tree(T11, tree(T34, T38, T36), T13), T37) :- minimum1(T38, T37).
minimum1(tree(T47, tree(T70, T74, T72), T49), T73) :- minimum1(T74, T73).
Clauses:
minimumc1(tree(T5, void, T6), T5).
minimumc1(tree(T11, tree(T24, void, T25), T13), T24).
minimumc1(tree(T11, tree(T34, T38, T36), T13), T37) :- minimumc1(T38, T37).
minimumc1(tree(T47, tree(T60, void, T61), T49), T60).
minimumc1(tree(T47, tree(T70, T74, T72), T49), T73) :- minimumc1(T74, T73).
Afs:
minimum1(x1, x2) = minimum1(x2)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minimum1_in: (f,b)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM1_IN_AG(tree(T11, tree(T34, T38, T36), T13), T37) → U1_AG(T11, T34, T38, T36, T13, T37, minimum1_in_ag(T38, T37))
MINIMUM1_IN_AG(tree(T11, tree(T34, T38, T36), T13), T37) → MINIMUM1_IN_AG(T38, T37)
MINIMUM1_IN_AG(tree(T47, tree(T70, T74, T72), T49), T73) → U2_AG(T47, T70, T74, T72, T49, T73, minimum1_in_ag(T74, T73))
R is empty.
The argument filtering Pi contains the following mapping:
minimum1_in_ag(
x1,
x2) =
minimum1_in_ag(
x2)
tree(
x1,
x2,
x3) =
tree(
x2)
MINIMUM1_IN_AG(
x1,
x2) =
MINIMUM1_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_AG(
x6,
x7)
U2_AG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_AG(
x6,
x7)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM1_IN_AG(tree(T11, tree(T34, T38, T36), T13), T37) → U1_AG(T11, T34, T38, T36, T13, T37, minimum1_in_ag(T38, T37))
MINIMUM1_IN_AG(tree(T11, tree(T34, T38, T36), T13), T37) → MINIMUM1_IN_AG(T38, T37)
MINIMUM1_IN_AG(tree(T47, tree(T70, T74, T72), T49), T73) → U2_AG(T47, T70, T74, T72, T49, T73, minimum1_in_ag(T74, T73))
R is empty.
The argument filtering Pi contains the following mapping:
minimum1_in_ag(
x1,
x2) =
minimum1_in_ag(
x2)
tree(
x1,
x2,
x3) =
tree(
x2)
MINIMUM1_IN_AG(
x1,
x2) =
MINIMUM1_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U1_AG(
x6,
x7)
U2_AG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U2_AG(
x6,
x7)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM1_IN_AG(tree(T11, tree(T34, T38, T36), T13), T37) → MINIMUM1_IN_AG(T38, T37)
R is empty.
The argument filtering Pi contains the following mapping:
tree(
x1,
x2,
x3) =
tree(
x2)
MINIMUM1_IN_AG(
x1,
x2) =
MINIMUM1_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(7) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINIMUM1_IN_AG(T37) → MINIMUM1_IN_AG(T37)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(9) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
MINIMUM1_IN_AG(
T37) evaluates to t =
MINIMUM1_IN_AG(
T37)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from MINIMUM1_IN_AG(T37) to MINIMUM1_IN_AG(T37).
(10) NO