(0) Obligation:

Clauses:

minimum(tree(X, void, X1), X).
minimum(tree(X2, Left, X3), X) :- minimum(Left, X).

Queries:

minimum(a,g).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minimum_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x5)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(tree(X2, Left, X3), X) → U1_AG(X2, Left, X3, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)

The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x5)
MINIMUM_IN_AG(x1, x2)  =  MINIMUM_IN_AG(x2)
U1_AG(x1, x2, x3, x4, x5)  =  U1_AG(x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(tree(X2, Left, X3), X) → U1_AG(X2, Left, X3, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)

The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x5)
MINIMUM_IN_AG(x1, x2)  =  MINIMUM_IN_AG(x2)
U1_AG(x1, x2, x3, x4, x5)  =  U1_AG(x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)

The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x5)
MINIMUM_IN_AG(x1, x2)  =  MINIMUM_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)

R is empty.
The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x2)
MINIMUM_IN_AG(x1, x2)  =  MINIMUM_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(X) → MINIMUM_IN_AG(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = MINIMUM_IN_AG(X) evaluates to t =MINIMUM_IN_AG(X)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from MINIMUM_IN_AG(X) to MINIMUM_IN_AG(X).



(12) FALSE

(13) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minimum_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1, x2)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x4, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(14) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1, x2)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x4, x5)

(15) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(tree(X2, Left, X3), X) → U1_AG(X2, Left, X3, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)

The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1, x2)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x4, x5)
MINIMUM_IN_AG(x1, x2)  =  MINIMUM_IN_AG(x2)
U1_AG(x1, x2, x3, x4, x5)  =  U1_AG(x4, x5)

We have to consider all (P,R,Pi)-chains

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(tree(X2, Left, X3), X) → U1_AG(X2, Left, X3, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)

The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1, x2)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x4, x5)
MINIMUM_IN_AG(x1, x2)  =  MINIMUM_IN_AG(x2)
U1_AG(x1, x2, x3, x4, x5)  =  U1_AG(x4, x5)

We have to consider all (P,R,Pi)-chains

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)

The TRS R consists of the following rules:

minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)

The argument filtering Pi contains the following mapping:
minimum_in_ag(x1, x2)  =  minimum_in_ag(x2)
minimum_out_ag(x1, x2)  =  minimum_out_ag(x1, x2)
tree(x1, x2, x3)  =  tree(x2)
U1_ag(x1, x2, x3, x4, x5)  =  U1_ag(x4, x5)
MINIMUM_IN_AG(x1, x2)  =  MINIMUM_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(19) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)

R is empty.
The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x2)
MINIMUM_IN_AG(x1, x2)  =  MINIMUM_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(21) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINIMUM_IN_AG(X) → MINIMUM_IN_AG(X)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(23) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = MINIMUM_IN_AG(X) evaluates to t =MINIMUM_IN_AG(X)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from MINIMUM_IN_AG(X) to MINIMUM_IN_AG(X).



(24) FALSE