(0) Obligation:
Clauses:
minimum(tree(X, void, X1), X).
minimum(tree(X2, Left, X3), X) :- minimum(Left, X).
Queries:
minimum(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minimum_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x5)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X2, Left, X3), X) → U1_AG(X2, Left, X3, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x5)
MINIMUM_IN_AG(
x1,
x2) =
MINIMUM_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4,
x5) =
U1_AG(
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X2, Left, X3), X) → U1_AG(X2, Left, X3, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x5)
MINIMUM_IN_AG(
x1,
x2) =
MINIMUM_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4,
x5) =
U1_AG(
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x5)
MINIMUM_IN_AG(
x1,
x2) =
MINIMUM_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)
R is empty.
The argument filtering Pi contains the following mapping:
tree(
x1,
x2,
x3) =
tree(
x2)
MINIMUM_IN_AG(
x1,
x2) =
MINIMUM_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(X) → MINIMUM_IN_AG(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
MINIMUM_IN_AG(
X) evaluates to t =
MINIMUM_IN_AG(
X)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from MINIMUM_IN_AG(X) to MINIMUM_IN_AG(X).
(12) FALSE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minimum_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1,
x2)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x4,
x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1,
x2)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x4,
x5)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X2, Left, X3), X) → U1_AG(X2, Left, X3, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1,
x2)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x4,
x5)
MINIMUM_IN_AG(
x1,
x2) =
MINIMUM_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4,
x5) =
U1_AG(
x4,
x5)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X2, Left, X3), X) → U1_AG(X2, Left, X3, X, minimum_in_ag(Left, X))
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1,
x2)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x4,
x5)
MINIMUM_IN_AG(
x1,
x2) =
MINIMUM_IN_AG(
x2)
U1_AG(
x1,
x2,
x3,
x4,
x5) =
U1_AG(
x4,
x5)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)
The TRS R consists of the following rules:
minimum_in_ag(tree(X, void, X1), X) → minimum_out_ag(tree(X, void, X1), X)
minimum_in_ag(tree(X2, Left, X3), X) → U1_ag(X2, Left, X3, X, minimum_in_ag(Left, X))
U1_ag(X2, Left, X3, X, minimum_out_ag(Left, X)) → minimum_out_ag(tree(X2, Left, X3), X)
The argument filtering Pi contains the following mapping:
minimum_in_ag(
x1,
x2) =
minimum_in_ag(
x2)
minimum_out_ag(
x1,
x2) =
minimum_out_ag(
x1,
x2)
tree(
x1,
x2,
x3) =
tree(
x2)
U1_ag(
x1,
x2,
x3,
x4,
x5) =
U1_ag(
x4,
x5)
MINIMUM_IN_AG(
x1,
x2) =
MINIMUM_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(tree(X2, Left, X3), X) → MINIMUM_IN_AG(Left, X)
R is empty.
The argument filtering Pi contains the following mapping:
tree(
x1,
x2,
x3) =
tree(
x2)
MINIMUM_IN_AG(
x1,
x2) =
MINIMUM_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINIMUM_IN_AG(X) → MINIMUM_IN_AG(X)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(23) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
MINIMUM_IN_AG(
X) evaluates to t =
MINIMUM_IN_AG(
X)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from MINIMUM_IN_AG(X) to MINIMUM_IN_AG(X).
(24) FALSE